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Abstract. Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic
Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the
corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, 1s applied to build and test the prediction models.
Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus 1t 1s
possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments.
The True Skill Statistics are higher than 0.36 1n 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic
fields do perform well, however they are less sensitive in predicting large flares. Employing the nonpotentiality predictors from vector fields improves the performance of

predicting large flares of magnitude >M>J5.0 and >X1.0.

Introduction

Based on the long-term reliable observations of the photospheric vector mag-
netic fields by SMFT, we adopt some nonpotentiality measures which are not
available from observations of only line-of-sight magnetic fields to study the
prediction of solar flares. The data for the input of the prediction model are ob-
tained by local observations, and the key measures as predictors are available
without manual operations.

From our experiments, the combinations of magnetic measures derived from
longitudinal fields perform well in the flare prediction, however, they may be
less sensitive than the measures from vector fields in predicting large flares.
The information of transverse fields makes a limited contribution to the predic-
tion of low magnitude flares, but it does improve the prediction for large flares

Prediction Verification
Table 2: Definition of the 2x2 Contingency Table (Confusion Matrix)

Predicted
Observed Yes No Total

Yes x y Ni=x2+y
No z w No=z4+w

N=x+y+z+w

The so-called skill scores indicate the relative accuracy of a prediction to some
standard reference predictions. The generic form of skill score 1s

g = 2 T 100%,

.. . Sperfect — Sref
such as >M5.0 and >X1.0 ones. Thus, it 1s reasonable to include transverse

field components in flare predictions. where S 1s a particular measure of accuracy, S, a reference, and Sy et the

perfect prediction. A no-skill prediction scores 0, a positive score shows a

To avoid misleading the optimization work or misusing the results from a s- better prediction than the reference, and the perfect prediction scores 1.

ingle verification measure, prediction results should be assessed carefully. It
1s helpful to consider multiple verification measures. A step like £-fold cross-
validation 1s necessary for improving the generalization capability of the pre-

Table 3: Verification Measures (VM)

. L. . . : . VM Derivation Formulation w-Dominated  Range
diction models. The intrinsic properties of various data sets may make a spe-
cific tool perform rather differently, and hence, it 1s then significant to make Gilbert Skill Score  GSS = =L GSS = g rw o= — CSI —1/3,1]
comparisons in the same data environment. Heidke Skill Score  HSS = —EU-lv b pgg— __2wys) . p —1,1]
Data True Skill Statistic  TSS = POD — POFD 1SS = i — POD —1,1]
Table 1: Flaring (f) and Non-flaring (n-f) Sample Distributions Clayton Skill Score  C55 = FOH — DFR CSS = o) — FOH —11]
Flaring Threshold Critical Success Index CSI = 2= CSl = CSI [0, 1]
Time Window Category C1.0 C5.0 M1.0 M5.0 X1.0 F measure Fy =2(POD™ '+ FOH ™)™ Fy = 22— F 0, 1]
43 hr f 918 427 252 71 42
n-f 1255 1746 1921 2102 2131 cf., Woodcock 1976; Doswell et al. 1990; Schaefer 1990; Chinchor 1992; Murphy 1996.
4 hr f 697 291 167 39 25 F1 = (x+ 2)(x +y)/N, the expected number of correct event predictions due to chance.
n-f 1476 1882 2006 2134 2148 Ey = (y+w)(z+w)/N, the expected number of correct non-event predictions due to chance.
2 hr f 475 181 95 22 17
n-f 1698 1992 2078 2151 2156 Results
6 hr f 309 101 38 12 9
n-f 1864 2072 2115 2161 2164 Table 4: Verification Results from Testing SVM Classifier
o Prediction Verification Measure
Predictor Gl’OllpS Flare Level Time Window POD FOH POCN CsI F TSS CSS HSS GSS ACC No/N

48 hr 0.707+0.011 0.690+0.013 0.782+0.008 0.538+0.013 0.698+0.011 0.474+0.020 0.472+0.020 0.4734+0.020 0.312+0.018 0.742+0.010 0.578
24 hr 0.677+0.019 0.617+0.013 0.840£0.008 0.478+0.016 0.645+£0.014 0.478+0.022 0.458+0.020 0.466+0.021 0.306£0.018 0.761£0.010 0.679

) >Cl1.
V06 (A1, |J z’, ’hc’, ‘Oza\,‘, Dfrees AEm)s >¢1.0 12hr  0.65340.028 0.50840.010 0.89540.007 0.39940.013 0.56940.014 0.475+0.024 0.404--0.014 0.430-£0.016 0.275::0.013 0.786::0.006 0.781
6hr  0.56040.026 0.423:0.022 0.92340.004 0.317:£0.017 0.47940.020 0.430+0.026 0.346-:0.025 0.37840.024 0.235:0.018 0.82640.009 0.858
VO8 (A, A, |J2, |hc|s |Qav|s Prees AEs AEm); 48hr  0.627+0.026 0.549+0.019 0.90640.005 0.415:0.020 0.58440.020 0.500-£0.027 0.45540.024 0.474+0.025 0.313£0.021 0.82540.008 0.803
— 050 24hr  0.62640.028 0.457-£0.022 0.93940.004 0.3570.018 0.524-20.018 0.507+0.026 0.396::0.024 0.43740.022 0.282:0.019 0.847-+0.008 0.866
LOS (dgy,, Vi Bz, (vth)ma Lgnla 5<Bz))a e 12hr  0.485:0.044 0.40020.028 0.952+0.004 0.2830.028 0.435+0.033 0.419:£0.044 0.35240.031 0.379£0.035 0.23940.029 0.896+0.006 0.917
6hr  0.59520.064 0.250-20.029 0.979-£0.003 0.219:£0.029 0.351:£0.038 0.508-£0.065 0.229+0.032 0.306::0.041 0.187+0.029 0.8980.006 0.954
A10 (AY, |J2|, |hel, Oéav‘, Dfrees AEms VhBz, (Vth)m, Lgnla € (Bz)), 48hr  0.642+0.028 0.4330.021 0.95040.004 0.350-£0.021 0.51640.023 0.531:0.030 0.38320.024 0.438+0.026 0.284::0.021 0.86040.007 0.884
MO 24hr  0.55040.039 0.41940.023 0.962-20.003 0.314:£0.023 0.474:£0.028 0.486::0.039 0.381:£0.026 0.424:0.030 0.273+0.023 0.907+0.004 0.923
Al12 (Ao, A, ‘(] Z|, | hc|, ‘Oéav|a Dirocs AE> dps VB2, (Vh Bz>m, Lgnla g( Bz)) 12hr  0.55440.056 0.344+0.021 0.97940.002 0.266+0.025 0.41540.030 0.505+0.052 0.32340.022 0.382+0.031 0.2404-0.024 0.934+0.004 0.956

6 hr 0.523+0.067 0.2254+0.028 0.986+0.002 0.191£0.028 0.312+£0.039 0.474+0.067 0.2114+0.030 0.286+0.040 0.173+0.028 0.939+£0.004 0.973

. . 48hr  0.634-:0.048 0.31940.020 0.987-0.002 0.268+0.020 0.41940.025 0.587+0.047 0.306+0.021 0.393-:0.026 0.24740.020 0.942-:0.004 0.967
(Cui et al. 2006; Jlng et al. 20006; Yang et al. 2012) M50 24hr  0.329+£0.114 0.43440.094 0.988£0.002 0.23140.075 0.3530.093 0.321+0.114 0.42240.095 0.343-:0.094 0.22440.075 0.980-£0.003 0.982
=V 12hr  0.460+£0.104 0.275+0.067 0.9940.001 0.2130.056 0.338=:0.075 0.447+0.105 0.269+0.067 0.329+0.076 0.207+0.056 0.982+0.002 0.990

6hr  0.667-£0.139 0.22040.038 0.998-:0.001 0.20240.042 0.327+0.058 0.654+0.139 0.2180.039 0.32240.059 0.198-0.042 0.985-0.002 0.994

Meth()d: Supp()rt Vect()l’ Classiﬁer (Vapnlk 1995) 48hr  0.52240.070 0.48740.141 0.99140.001 0.3264-0.072 0.4744-0.082 0.50740.070 0.477+0.141 0.462+0.084 0.316::0.073 0.976+:0.005 0.981

~X1.0 24 hr 0.480+0.102 0.3754+0.094 0.994+0.001 0.262+0.061 0.401£0.078 0.469+0.102 0.3694+0.095 0.39240.079 0.256+0.061 0.983+0.003 0.982
- 12 hr 0.533+0.062 0.278+0.023 0.996+0.001 0.214+0.010 0.353+£0.013 0.522+0.061 0.274+0.023 0.346+0.013 0.210£0.010 0.985£0.002 0.990

Prlmal Optlmlzatlon prOblem 6 hr 0.700+0.200 0.16940.055 0.999£0.001 0.167£0.056 0.270£0.084 0.688+0.199 0.167+0.056 0.265+0.084 0.164+0.056 0.987-£0.003 0.996

The full version of the table available in the electronic version contains the
V06, V08, L0O5, and A10 predictor results. Al12’s results are shown in Table
4, in which each value with 1ts error 1s the arithmetical mean of the specific
verification measure in £ times testing.
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Dual optimization problem:
References

Chinchor, N. 1992, in Proceedings of the 4th Conference on Message Understanding, MUCA4
'92 (Stroudsburg, PA: Association for Computational Linguistics), 22

l Cui, Y. M,, Li, R, Zhang, L. Y., He, Y. L., & Wang, H. N. 2006, SoPh, 237, 45
subject to Z yic; = 0, Doswell, C. A., III, Davies-Jones, R., & Keller, D. L. 1990, WtFor, 5, 576
1=1 . Jing, J., Song, H., Abramenko, V., Tan, C., & Wang, H. 2006, ApJ, 644, 1273
O <Ci=1,---,1

Murphy, A. H. 1996, WtFor, 11, 3

Schaefer, J. T. 1990, WtFor, 5, 570
Vapnik, V. N. 1995, The Nature of Statistical Learning Theory (New York: Springer)
l Woodcock, F. 1976, MWRv, 104, 1209

f(x) = sgn(w* - ¢(x) + b*) = sgn Z aly K (x,%;) + b Yang, X., Zhang, H. Q., Gao, Y., Guo, J., & Lin, G. H. 2012, SoPh, 280, 165
1=1

[ [ [

. 1 N\ N\

Hl(il”l §>4>4yiyj04i04jK(Xz’;Xj) — E Oéj ,
1=1 j=1 1=1

Gaussian Radial Basis kernal: K (x;,x;) = exp(—||x; — x;||*/c?)
Discriminant function:




