
A&A 592, A153 (2016)
DOI: 10.1051/0004-6361/201628306
c© ESO 2016

Astronomy
&Astrophysics

Empirical mode decomposition analysis of random processes
in the solar atmosphere

D. Y. Kolotkov1, S. A. Anfinogentov1, and V. M. Nakariakov1, 2, 3

1 Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL, UK
e-mail: D.Kolotkov@warwick.ac.uk

2 School of Space Research, Kyung Hee University, Yongin, 446-701 Gyeonggi, Korea
3 Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, 196140 St Petersburg, Russia

Received 13 February 2016 / Accepted 10 June 2016

ABSTRACT

Context. Coloured noisy components with a power law spectral energy distribution are often shown to appear in solar signals of
various types. Such a frequency-dependent noise may indicate the operation of various randomly distributed dynamical processes in
the solar atmosphere.
Aims. We develop a recipe for the correct usage of the empirical mode decomposition (EMD) technique in the presence of coloured
noise, allowing for clear distinguishing between quasi-periodic oscillatory phenomena in the solar atmosphere and superimposed
random background processes. For illustration, we statistically investigate extreme ultraviolet (EUV) emission intensity variations
observed with SDO/AIA in the coronal (171 Å), chromospheric (304 Å), and upper photospheric (1600 Å) layers of the solar atmo-
sphere, from a quiet sun and a sunspot umbrae region.
Methods. EMD has been used for analysis because of its adaptive nature and essential applicability to the processing non-stationary
and amplitude-modulated time series. For the comparison of the results obtained with EMD, we use the Fourier transform technique
as an etalon.
Results. We empirically revealed statistical properties of synthetic coloured noises in EMD, and suggested a scheme that allows for
the detection of noisy components among the intrinsic modes obtained with EMD in real signals. Application of the method to the
solar EUV signals showed that they indeed behave randomly and could be represented as a combination of different coloured noises
characterised by a specific value of the power law indices in their spectral energy distributions. On the other hand, 3-min oscillations
in the analysed sunspot were detected to have energies significantly above the corresponding noise level.
Conclusions. The correct accounting for the background frequency-dependent random processes is essential when using EMD for
analysis of oscillations in the solar atmosphere. For the quiet sun region the power law index was found to increase with height
above the photosphere, indicating that the higher frequency processes are trapped deeper in the quiet sun atmosphere. In contrast,
lower levels of the sunspot umbrae were found to be characterised by higher values of the power law index, meaning the domination
of lower frequencies deep inside the sunspot atmosphere. Comparison of the EMD results with those obtained with the Fourier
transform showed good consistency, justifying the applicability of EMD.
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1. Introduction

The solar atmosphere evidently shows a wide range of peri-
odicities detected throughout the whole electromagnetic spec-
trum. They have different physical nature and causes, and their
periods vary from a fraction of second up to several years,
and even to centuries. Some examples of the oscillatory pro-
cesses responsible for the periodicities are the 11 yr solar
cycle, the so-called quasi-biennial oscillations, the helioseis-
mic variations (see Hathaway 2010; Bazilevskaya et al. 2014;
Christensen-Dalsgaard 2002, and references therein for recent
comprehensive reviews), magnetohydrodynamic waves and os-
cillations in different plasma structures of the solar atmosphere
(see De Moortel & Nakariakov 2012; Liu & Ofman 2014;
Jess et al. 2015), and various quasi-periodic pulsations (QPP)
appearing in solar flare light curves (Nakariakov & Melnikov
2009; Kupriyanova et al. 2010; Simões et al. 2015).

In addition to clear oscillations, broadband modes usually
associated with noise often appear in solar signals of various
types too. These noisy components may have basically different

physical nature, for example, they can be caused by instrumental
artefacts or by random processes operating in the solar atmo-
sphere. Interestingly, in the majority of previous studies these
modes were usually ignored and simply disregarded in analysis.
However, recent works have shown that coloured noises can be
recognised in solar and stellar flare light curves with the Fourier
power spectrum, and accumulate a significant part of a signal’s
spectral energy. They are manifested as a power-law-like Fourier
power spectra, and seem to be intrinsic features of many obser-
vational data sets detected by different instruments. For exam-
ple, Inglis et al. (2015) considered flare signals exhibiting QPP
detected with the PROBA2 (Large Yield Radiometer), Fermi
(Gamma-ray Burst Monitor), Nobeyama Radioheliograph, and
Yohkoh (HXT) instruments. They found that the majority of
cases considered could be described by a power law in the
Fourier power spectra. Signatures of strong noisy components
having power-law-like Fourier power spectral densities were
also detected in Gruber et al. (2011), where the RHESSI and
Fermi (Gamma-ray Burst Monitor) observations of solar flares
were considered. Application of the wavelet transform modulus
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maxima method showed the multifractal spectra of the tempo-
ral variation of the X-ray emission in solar flares (McAteer et al.
2007).

The interest in the coloured noise in the solar atmosphere
is connected with its possible link with various dynamical phe-
nomena. For example, in the case of QPP in flares a frequency-
dependent noise may be associated with repetitive magnetic re-
connection (e.g. Bárta et al. 2011). In the case of the quiet Sun,
the evolution of the noise with height may reveal the physical
processes responsible for the generation, dissipation and evolu-
tion of magnetohydrodynamic waves, turbulence, and episodic
energy releases. Recently, Ireland et al. (2015) studied mean
Fourier spectra of various regions of the solar corona observed at
the 171 Å and 193 Å wavelengths, and found that they can be de-
scribed by a power law at lower frequencies, tailing to a flat spec-
trum at higher frequencies, plus a Gaussian-shaped contribution
specific for different regions of the corona. Also, understanding
of the noise is important for the development of automated detec-
tion techniques (e.g. Nakariakov & King 2007; Sych et al. 2010;
Ireland et al. 2010; Martens et al. 2012).

In addition to the Fourier and wavelet techniques, another
spectral method being actively used for the analysis of solar
signals is the Hilbert-Huang Transform technique developed in
Huang et al. (1998), Huang & Wu (2008). It is based upon the
empirical mode decomposition (EMD) of the signal of interest
into the basis derived directly from the data by iterative search-
ing for the local time scale naturally appearing in the signal. Be-
ing not restricted by an a priori assignment of the basis func-
tion, EMD operates adaptively and, hence, is essentially suitable
for processing non-stationary and non-linear time series typical
for the solar signals. These unique properties of EMD attracted
a growing interest in the application of this technique to anal-
ysis of dynamical phenomena on the Sun. This technique has
already been successfully applied to solar signals. For exam-
ple, anharmonic and multi-modal structures of solar QPP were
revealed with EMD in Nakariakov et al. (2010), Kolotkov et al.
(2015b), detailed two-dimensional information about a propa-
gating and a standing wave in a coronal loop was obtained with
EMD in Terradas et al. (2004), periodicities associated with the
11 yr solar cycle were investigated with EMD in Kolotkov et al.
(2015a), Vecchio et al. (2012), Zolotova & Ponyavin (2007), in-
cluding revealing the periodicities in the variation of the so-
lar radius (Qu et al. 2015). Also, periodicity in the monthly oc-
currence numbers and monthly mean energy of coronal mass
ejections was studied with EMD by Gao et al. (2012). Long-
term variability of the coronal index was analysed with EMD
in Deng et al. (2015). We would like to point out that a simi-
lar technique was independently designed by Nagovitsyn (1997),
who applied it to the analysis of non-linear processes in the solar
activity on large time scales.

In contrast to the Fourier and wavelet spectral methods, be-
haviour of coloured noises with arbitrary indices in power law
dependences of their power spectral densities in the EMD anal-
ysis has not been clearly revealed yet. The analysis has been
restricted to the EMD of a white noise (Wu & Huang 2004).
Based on the empirical fact that EMD effectively operates as
a dyadic filter (Flandrin et al. 2004), numerical experiments in
Wu & Huang (2004) showed that intrinsic mode functions (IMF)
obtained with EMD from a number of independent white noise
samples are normally distributed, and the product of the IMF en-
ergy density and its mean period is constant. Furthermore, the
energy density function was found to be chi-squared distributed.
Analysis of a particular case of the red noise in EMD has been

made in Franzke (2009), revealing noise-like properties of the
Earth’s climate data.

In this paper we extend the studies of Wu & Huang (2004)
and Franzke (2009), and reveal similar empirical properties of
coloured noises in EMD, allowing for arbitrary indices in power
law dependences of their power spectral densities in application
to the solar atmosphere. We show that coloured noises can be
successfully described by the chi-squared distribution too. How-
ever the parameter of the distribution function, the number of
degrees of freedom (DoF), needs to be adjusted accordingly
for each sort of noise. For illustration of the reliability of the
method, we adapt this EMD-based technique for analysing so-
lar extreme ultraviolet (EUV) data sets obtained with SDO/AIA,
testing them in the manner described above for the presence of
randomly distributed dynamical processes. Historically, obser-
vations of the oscillatory processes in the atmosphere of the Sun
attract a great interest among the research community. In particu-
lar, the high-frequency tails of solar dynamical spectra, obtained
from the lower layers of the solar atmosphere, were found to
vary significantly with the height and magnetic properties of the
region (see, e.g. Evans et al. 1963; Orrall 1966; Woods & Cram
1981; Deubner & Fleck 1990). In this paper we use the data ob-
tained with the modern SDO/AIA instrument. Due to the ad-
vanced combination of this data’s spatial and temporal resolu-
tions and high values of the signal-to-noise ratio, it allows us to
investigate the higher coronal altitudes of the solar atmosphere
in the EUV band and directly compare their dynamical spectra
with the chromospheric and photospheric layers. We show that
application of this EMD-based noise-test to SDO/AIA data sets
revealed that they mainly consist of random signals represented
by a combination of the white noise at shorter-period spectral
components and the reddish noises at longer periods.

2. Methodology and properties of coloured noises
in EMD

Power spectral density S of coloured noises as a function of
frequency, f can be written as S = C/ f α, where C is a con-
stant which can be reduced to unity by appropriate normalisa-
tion without loss of generality, and α is a power law index char-
acterising the steepness of the dependence, that is its “colour”.
In further analysis, we consider only non-negative values of α.
We recall that noises with α = 0 are usually referred to as the
white noises with constant spectral energy for all considered fre-
quencies, while non-zero values of α correspond to the so-called
coloured noises. In particular, α = 1 describes a flicker (pink)
noise, while α = 2 gives a Brown(ian) (red) noise.

Wu & Huang (2004) analysed behaviour of the white noise
with α = 0 in EMD. Based on the numerical examples they es-
tablished an empirical relation for the energy densities Em of
each separate intrinsic mode function (IMF) obtained with the
EMD expansion of the white noise samples and their corre-
sponding mean periods Pm as EmPm = const. This empirical
fact is directly related to the dyadic property of EMD. We note
that the dyadic nature of EMD in turn may be corrupted by the
so-called mode-leakage (also often referred to as mixing) prob-
lem (see, e.g. Wu & Huang 2009) causing remarkable deviations
of the energy-period dependence of some particular IMF from
the expected form. Additionally, the probability density function
of each IMF was found to be normally distributed. The latter
property leads to the chi-squared distribution of the IMF energy
density Em with k degrees of freedom (DoF):

f (Em) = χ2 (NEm, k) . (1)
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By definition, the white noise of length N contains N indepen-
dent and random data points. Hence, each sample of such a white
noise has its N DoF which are evenly distributed across the
Fourier power spectrum. As the white noise spectral energy is
also evenly distributed across the spectrum, the number k in the
chi-squared distribution of Em is proposed to be proportional to

the mean modal energy, that is k = NĒm, where Ēm =

n∑
i=1

Emi/n

with n being a sufficiently large number of the white noise sam-
ples considered.

However, this simple rule should not work for coloured
noises in the case with α , 0. Indeed, the spectral energy
of coloured noises is distributed across the spectrum by the
power law dependence mentioned above. Hence, data points of
coloured noises are no longer independent, but instead they are
correlated with each other. The latter makes the exact determi-
nation of the DoF number of the coloured noise, and conse-
quently the DoF number of IMF obtained from such a noise with
EMD, to be a non-trivial task. However, assuming again that the
coloured noise IMFs are normally distributed, the modal energy
Em can be represented by a sum of k independent normal vari-
ables Xi with zero mean and variance σ, as

Em =

k∑
i=1

X2
i . (2)

In the case of white noises, where the modal energies and the
number of DoF are evenly distributed across the spectrum, the
variance σ is of the same value for all IMFs. Hence, it can
be normalised to unity, and the modal energy (2) is distributed
by the chi-squared law (1) with k being the number of DoF
(Wu & Huang 2004). In contrast, in the coloured noise case the
number of DoF of a separate IMF may differ from the mean
modal energy, and the corresponding normalisation is impos-
sible. In this case, the quantity distributed by the chi-squared
law is

Y =

k∑
i=1

X2
i

σ2 , (3)

with arbitrary values of σ, that in general may be different for
different IMF. Using the fact that the mean value of Y is equal to
the number of DoF, k, one can obtain from Eqs. (2) and (3) the
value of σ of coloured noise IMFs as

σ2 =
NĒm

k
· (4)

Substituting Eqs. (2) and (4) into Eq. (3), we are able to write
the probability density function of coloured noise IMFs energies
Em in a general form as

f̃ (Em) =
k

NĒm
χ2

(
kEm

Ēm
, k

)
, (5)

which is, in fact, the chi-squared distribution of the quantity
Y = kEm/Ēm, governed by a single parameter k being the num-
ber of DoF, and reducing to the corresponding white noise dis-
tribution (1) for k = NĒm.

From a practical point of view, distribution (5) can be repre-
sented by functions E± giving its upper (99%) and lower (1%)
confidence intervals, respectively. To obtain their dependences
on the instant period P, E±(P), we empirically determine de-
pendences k(P) (DoF) and Ēm(P) (mean modal energy den-
sity) from numerical experiments and substitute them in distri-
bution (5). More specifically, Fig. 1 shows several examples of

the modal energy NEm distribution of the synthetic noisy sig-
nals with α = 0 (white noise) and α = 1.5 (reddish noise), fit-
ted by the probability density function (5) with DoF determined
from the best fitting and the mean energy taken from the input
data. The functional form of distribution (5) has been fitted to the
binned histograms shown in Fig. 1 with the number of bins being
200. The fitting procedure is robust, giving identical results in a
broad rang of the number of bins tested, from 20 to 1000.

The mean modal energy NĒm of the white noise IMFs
was found to change proportionally to the best fitted DoF (see
Eq. (1)). However, in some cases the detected values of DoF may
significantly differ from the mean modal energy. It also confirms
the only approximate dyadic nature of EMD, with possible dis-
crepancies caused by the mode-leakage problem. In contrast, the
reddish noise with α = 1.5 shows rather more complicated be-
haviour with inverse proportionality. For both noises DoF are
found to decrease with the IMF number. Additionally, for both
noises, IMFs with higher values of DoF show distributions of
NEm closer to the normal distribution, which is also a typical
feature of the chi-squared distribution.

The dependence Ēm(P) is obtained by fitting the modal en-
ergy values averaged over each considered period with a lin-
ear function in a logarithmic scale (see Fig. 2). This also al-
lows for empirical determination of the α index in the depen-
dence S = 1/ f α. Indeed, assuming again the dyadic properties
of EMD, we can calculate the energy density Em of the mth mode
as:

Em =

∫ √
2 fm

fm/
√

2

d f
f α

= C0Pα−1
m , (6)

where C0 is some constant, and fm and Pm are the modal fre-
quency and period, respectively, with fm = P−1

m . Hence, accord-
ing to Eq. (6), the empirical relation EmPm = const. obtained for
the white noise (α = 0) in Wu & Huang (2004) can be gener-
alised to the form

EmP1−α
m = const., (7)

for coloured noises with arbitrary values of α. Similar relation
between modal energies and periods has been shown in Franzke
(2009). However, this study was restricted to a particular case of
the red noise only. In a logarithmic scale, the slope of the line
given by a y = (α − 1)x + b function with y = ln Em, x = ln Pm,
and b = ln C0, allows for the estimation of the empirical value
of α, appearing in the analysed sample. Numerical experiments
performed with the use of synthetic signals showed that such an
empirical estimation gives values of α with relative errors of up
to 3.3%. We recall that the dyadic nature of EMD can still be
significantly corrupted by the mode-leakage problem. Following
Wu & Huang (2004) we excluded the first IMF (with the short-
est period) out of fitting as it demonstrates rather different be-
haviour than the other modes. We also do not fit the periods that
are longer than a half-length of the analysed signal as the cor-
responding IMFs contain insufficient number of extrema for the
correct determination of their periods.

Substituting the empirical dependences k(P) and Ēm(P) to
the chi-squared distribution given by expression (5) we cal-
culate the corresponding confidence intervals E±(P). Figure 2
shows the energy-period dependences of different modes and
corresponding confidence intervals obtained empirically with
the method described above for the noises with α = 0 (the white
noise), α = 0.5, α = 1 (flicker or the pink noise), α = 1.5, α = 2
(Brown(ian) or the red noise), and α = 2.5. The dependences are
given by the dots showing the energy and mean period of each
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Fig. 1. Histograms (black) showing the normalised modal energy NEm fitted by distribution (5) (red) for several IMFs obtained with EMD from
2000 independent samples of the synthetic white (α = 0, left column) and coloured (α = 1.5, right column) noises. Each noise sample contains
N = 500 data points. All samples were normalised for their total energy to be unity.

IMF. The corresponding modal energy and mean period were

calculated as NEm =

N∑
j=1

C2
m j

and Pm = 2N/bm, respectively,

with Cm being the mth IMF, N is the total length of the signal,
and bm is the number of extrema in the mth IMF. The dots are
seen to scatter within the confidence intervals and are clustered
together in separate groups indicating localisation of periods and
energies of IMFs. In particular, numerical results obtained for
the white noise samples are in consistence with those shown in
Wu & Huang (2004). In Fig. 2 we also show their confidence in-
tervals obtained with the second-order Taylor expansion of the
exact dependences, and hence valid only in the regions with
small deviations of Em from the mean value.

In the case when one tests some real signals for randomly
distributed processes with an a priori unknown value of α, the
analysis can be itemised in the following steps:

– Normalisation of all analysed samples for their total energy
being unity before the EMD processing.

– Empirical estimation of the power law index α from the slope
of the linear fitting of the modal energy averaged over each
period.

– Construction of corresponding empirical dependencies
Ēm(P) in form (7) and k(P) for the normalised synthetic
coloured noise with a certain value of α determined above.

– Calculation of the confidence intervals E±(P) from the chi-
squared distribution shown in Eq. (5) for the chosen sort of
the coloured noise.

Having obtained E±(P), one can consider IMFs with an energy-
period distribution within this interval to be related to a random
process with a certain value of the power law index α.

3. Noise-testing of SDO/AIA data

We applied the methodology described in the previous section
to the investigation of statistical properties of the EUV emis-
sion coming from the NOAA 11131 active region and its neigh-
bourhood. We used SDO/AIA observations corresponding to
different levels of the solar atmosphere: the upper photosphere
(1600 Å), chromosphere (304 Å), and corona (171 Å). For each
wavelength we analysed a continuous sequence of 500 images
with the highest available cadence (12 s for 304 and 171 Å, and
24 s for 1600 Å) starting on 8 December 2010, 00:00:00 UT,
when the active region was close to the central meridian. There
were no flares during the observation. We downloaded the
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Fig. 2. Energy-period distributions (yellow dots) of IMFs obtained with EMD from 2000 independent samples of synthetic noisy signals with
α = 0 (the white noise), α = 0.5, α = 1 (flicker or the pink noise), α = 1.5, α = 2 (Brown(ian) or the red noise), and α = 2.5. Each sample contains
500 data points. All samples were normalised for their total energy to be unity. Period is measured in dimensionless evenly sampled time-steps
between the data points. The energy averaged over each period is indicated by the red crosses. Blue lines represent the empirical dependence of
the mean modal energy Ēm upon the period P, obtained with the linear fitting. Green lines show E±(P) functions, the 99% and 1% confidence
intervals, calculated for the chi-squared distribution given by Eq. (5). For the white noise (α = 0), the 99% confidence interval from Wu & Huang
(2004), obtained as the second-order Taylor expansion of the exact dependence, is shown with the dashed lines.

images from the SDO data processing centre1. Before download-
ing, the images were cropped, de-rotated, and coaligned.

For investigating statistical properties of the intensity vari-
ations in different channels, we selected two square regions
of interest (ROI 1 and 2) shown in Fig. 3. Each ROI is of

1 http://jsoc.stanford.edu/

50 pixels wide, giving us 2500 different intensity signals com-
ing from individual pixels. The first ROI is located in the quiet
sun region eastwards from the NOAA 11131 (heliographic co-
ordinates: Θ = 29.23◦, Φ = −17.46◦). We placed the sec-
ond ROI at the centre of the sunspot located in NOAA 11131
active region (heliographic coordinates: Θ = 31.27◦,
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SDO/AIA, 171 Å

ROI 2

ROI 1

−300 −200 −100 0
X [arcsec]

400

450

500

550

600

650

Y
 [a

rc
se

c]
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SDO/AIA, 1600 Å
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Fig. 3. Active region NOAA 11131 observed with SDO/AIA at the
171 Å (top), 304 Å (middle), and 1600 Å (bottom) wavelengths. Im-
ages are taken at 00:00:00 UT, 8 December 2010. White squares show
the regions of interest (ROI) for intensity variations considered in this
paper.

Φ = −3.98◦). This sunspot showed well pronounced 3-min
oscillations which were previously detected with SDO/AIA
(Reznikova et al. 2012; Sych & Nakariakov 2014; Yuan et al.
2014; Deres & Anfinogentov 2015).

Following the method described above we empirically found
that the intensity variations of the emission coming from each
individual pixel of the quiet sun region, ROI 1, have coloured
noise-like behaviour with the modal energy-period dependence
in the form given by Eq. (7) (see Fig. 4). Therefore we consider

these intensity variation signals as random processes with a
power law spectral energy distribution. The specific value of the
power law index α was empirically estimated for each wave-
length in the same manner that had been used for the synthetic
noises (see Fig. 2), that is by the linear fitting of the average en-
ergies to the dependence (7) in a logarithmic scale. The period
ranges where the fittings were carried out, were chosen to corre-
spond to the power-law-like parts of the spectra. The value of α
was found to increase with height in ROI 1 from 0.86 ± 0.03 for
the upper photosphere, 1600 Å line, to 1.29 ± 0.02 for the chro-
mosphere, 304 Å, and 1.32 ± 0.04 for the coronal 171 Å line,
with corresponding 1σ uncertainties. Such a behaviour of α in-
dicates that a higher-frequency oscillations are trapped deeper in
the quiet sun atmosphere. In contrast, the intensity signals com-
ing from the sunspot umbrae (ROI 2, see Fig. 5) in addition to a
power-law-like spectral energy distribution, were found to con-
tain several IMFs with periods of approximately two to four min-
utes and with energies significantly above the noise level. The
latter groups of IMFs could be clearly associated with 3-min os-
cillations already found in this sunspot. The value of α estimated
with the EMD-testing of the intensity signals coming from ROI 2
was found to decrease with height from 1.33 ± 0.04 for the up-
per photosphere (1600 Å), to 1.23 ± 0.1 for the chromosphere
(304 Å), and 1.26 ± 0.13 for the corona (171 Å), with corre-
sponding 1σ uncertainties, i.e. lower-frequency processes domi-
nate at lower levels of the sunspot atmosphere. Interestingly, that
the 171 Å and 304 Å intensity signals coming from ROIs 1 and 2
have nearly the same values of α, of about 1.2−1.3 correspond-
ing to the reddish noise behaviour. On the other hand it changes
dramatically for the 1600 Å line from about 0.86 in ROI 1 to 1.33
in ROI 2, indicating the change in the noise colour from the pink
(flicker) to the reddish one at lower altitudes of the solar atmo-
sphere when transiting from the quiet sun regions to the sunspot
umbrae. Figures 4 and 5 also show the mean Fourier spectra for
the same observational data sets, allowing for comparison of the
results obtained with these two essentially different spectral tech-
niques. Each mean Fourier spectrum was obtained by averaging
of the spectra of separate signals from each individual pixel of
ROIs 1 and 2. Similarly to the energy-period dependences of
IMFs obtained with EMD, the mean Fourier spectra are also seen
to have clear power-law-like regions at longer periods. The val-
ues of α detected with the mean Fourier spectra were found to
be fully consistent with the corresponding values detected with
the EMD-based testing.

More specifically, the top panels of Fig. 4 show the energy-
period dependences of IMFs of the intensity variations from the
quiet sun region (ROI 1), which look similarly at the 171 Å and
304 Å wavelengths. In analogy with the examples of synthetic
noises shown in Fig. 2, the dependences are shown by the dots
clustered in groups corresponding to separate IMFs. The spec-
tral energy distributions have non-trivial structures and can be
described as a superposition of two random processes with dif-
ferent power law indexes α for both 171 Å and 304 Å obser-
vational wavelengths. Indeed, at short periods (approximately
shorter than two minutes) the process with α ≈ 0 (the white
noise) dominates. The second component, with α being of about
1.32 and 1.29 for 171 Å and 304 Å, respectively (the reddish
noise), dominates at longer periods. These two noisy compo-
nents could originate from different sources and hence belong to
different physical processes of a natural or instrumental origin.

We calculated the confidence intervals of 99% and 1% signif-
icances (see Fig. 4) for both random components in assumption
of the chi-squared modal energy distribution given by Eq. (5).
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Fig. 4. Top panels: energy-period dependences of IMFs obtained with EMD of SDO/AIA data taken from the NOAA 11131 active region, ROI 1
from 00:00 to 03:20 UT, 8 December 2010. The spectral power and periods of individual IMF are shown by yellow dots. Total number of
considered observational samples is 2500, containing 500 data points each. The 99% and 1% confidence intervals are shown with the black solid
(white noise) and dashed (coloured noises) lines. The energy averaged over each period is indicated by the red crosses. Blue lines represent the
empirical dependence of the mean modal energy upon the period, obtained with the linear fitting. Green lines show the general confidence interval
for the superposition of the white and coloured noises. Bottom panels: Fourier spectral power-period dependences of the same data sets as shown
in the top panels. The spectral power and periods of individual Fourier harmonics are shown by yellow dots. The red crosses indicate the mean
Fourier spectra. The blue lines are the best linear fit showing the power-law-like regions of the spectra. Values of the power law index α with
corresponding 1σ uncertainties are shown above each panel.

Fig. 5. The same as shown in Fig. 4 for the SDO/AIA data sets taken from the NOAA 11131 active region, ROI 2.
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The maximal and minimal values of these intervals for each pe-
riod give us a general confidence interval for the superposition of
both processes. The general confidence intervals are indicated by
the green solid lines in Figs. 4 and 5. Energies of IMFs of 171 Å
and 304 Å signals in the top plots of Fig. 4 are located mainly in-
side the confidence intervals. The only exception is the first (the
shortest period) IMFs which have the energies above the upper
confidence limit. We note that the same feature of the first IMFs
also appears in the energy-period distributions obtained for syn-
thetic noises (see Fig. 2). Similar unusual behaviour of the first
mode energy of the white noise samples was also reported in
Wu & Huang (2004). Hence, we attribute this effect to the in-
trinsic artefact of the EMD technique and do not discuss it in
further analysis.

The other SDO/AIA data set taken from a lower level of
ROI 1, namely the intensity signals at 1600 Å, shows similar
spectral energy distribution well localised inside the general con-
fidence interval with α ≈ 0 and α ≈ 0.86. The latter proves
that the intensity variations observed in the quiet sun regions
can be definitely considered as a random process with the power
law spectral density distribution. However, the second group of
1600 Å IMFs with periods being between three and four min-
utes is located partly outside the interval and hence cannot be
attributed to the noise. As the 1600 Å observational wavelength
corresponds to the electromagnetic emission coming from the
upper photosphere, these IMFs are likely to be associated with
some specific periodic processes operating at lower levels of the
solar atmosphere.

Figure 5 shows the energy-period dependences of IMFs of
171 Å, 304 Å, and 1600 Å data sets taken from ROI 2. Sim-
ilarly to the previous cases, the longer-period spectral compo-
nents (with periods longer than aproximately ten minutes) can
be described by the power law distribution with the index α
being of about 1.26, 1.23, and 1.33, respectively. The spectral
components with approximate periods shorter than two minutes
are seen to be more related to the white noise distribution. As
ROI 2 is located above the sunspot umbrae (see Fig. 3), EMD
expansion of 171 Å and 304 Å data clearly gives a distinct group
of IMFs with energies outside the general confidence interval.
Their periods range approximately from two to four minutes,
coinciding with typical periods of 3-min sunspot oscillations.
Nearly the same periodicities can be also detected in the 1600 Å
energy-period distribution. These results are in accord with the
behaviour of the mean Fourier spectra which are also shown in
Fig. 5.

4. Discussion and conclusions

We revealed empirical properties of synthetic coloured noises
expanded via EMD, allowing for arbitrary values of the power
law index α in the power spectral density S as a function of
frequency, f written in the form S = 1/ f α. In analogy with
Wu & Huang (2004) where the corresponding properties of the
white noise (α = 0) are given, our findings can be briefly
itemised as follows:

– Based on the dyadic nature of EMD we found that the energy
density Em of IMFs obtained from the coloured noise sam-
ples with EMD is connected with the mean modal period Pm
through the relation EmP1−α

m = const., derived in Eq. (7).
– Energies of IMFs of coloured noises were found to be chi-

squared distributed, according to Eq. (5). The latter expres-
sion in turn reduces to the corresponding white noise distri-
bution shown in Wu & Huang (2004), for the limiting case

when α = 0 and the IMF’s numbers of DoF are proportional
to the modal energies.

– Numerical experiments performed with the use of synthetic
coloured noise samples showed that the chi-squared distri-
bution for Em is well applicable to the noises with values of
the power law index α being of up to 2 (see Fig. 2). While
for higher values of α, for example for α = 2 and α = 2.5
shown in Fig. 2, the distribution of modal energies is seen to
have a rather different form. The latter fact is related to the
dyadic properties of EMD, indicating that they are mainly
pronounced for coloured noises with approximate α < 2,
and are corrupted for noises with α > 2 when correlation
between data points is sufficiently strong in a signal.

Due to its adaptive nature and its advantages in analysing non-
stationary and non-linear signals, EMD is an intensively used
technique for the detection of quasi-periodicities in solar sig-
nals of various types. Hence, correctly accounting for the back-
ground frequency-dependent random processes is certainly of a
crucial importance when analysing oscillations in the solar at-
mosphere with EMD. In particular, the first signature that should
be addressed when using EMD is the doubling of the modal pe-
riods (we recall that in EMD the periods of individual modes
are not prescribed and are determined empirically). This dyadic
behaviour is typical for EMD when it operates with noisy sig-
nals, and, hence, the IMFs with doubled periods should be rather
referred to as some randomly distributed background process.
There are several examples showing such a dyadic behaviour
of IMF in solar signals. For example, similar behaviour can be
recognised in Terradas et al. (2004) where a coronal loop oscil-
lation was analysed with EMD. At least three first modes of the
EMD expansion shown there in Fig. 1 demonstrate the dyadic
behaviour with mean periods being of about 0.5, one, and two
minutes, respectively. Although only the first mode (with the
shortest period) was treated by the authors as a noise, this dyadic
property indicates that all these three modes together most likely
should be referred to as some background noise-like process.
Another example illustrating such a dyadic behaviour in peri-
odicities associated with the 11 yr solar cycle investigated with
the ensemble EMD method (Wu & Huang 2009) was detected
by Kolotkov et al. (2015a). The shorter-period modes of sev-
eral observational proxies, namely 22, 46, and 96 days varia-
tions of the 10.7 cm radio flux intensity and 23, 43, and 80 days
variations of the sunspot area records, demonstrate approximate
dyadic signatures. Lee et al. (2015) recently reported the detec-
tion of periodic variations of the total solar irradiance during the
last decade, found also with the ensemble EMD technique. Anal-
ysed data sets were observed independently with SORCE/TIM,
ACRIMSAT/ACRIM III, and SOHO/VIRGO instruments, and
were found each to contain at least three IMF with periods
of about 16.7, 28.6, 58.8 days (TIM), 16.4, 32.5, 57.8 days
(ACRIM III), and 16.1, 29.7, and 66 days (VIRGO), which may
be also referred to as modes with dyadic properties. In all exam-
ples mentioned above, for the exact determination of the power
law index characterising the colour of the corresponding noisy
components, further detailed analysis of the modal energies is
required.

For illustration, we applied this EMD-based method for
probing different layers of the solar atmosphere looking for the
appearance of randomly distributed processes. We analysed in-
tensity variation signals coming from two regions of interest:
one is located above a quiet sun area, and another is above a
sunspot, both are related to the NOAA 11131 active region. In
particular, the analysed sunspot showed clear 3-min oscillations
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of a non-regular deep-modulated wave-train profile shape (see,
e.g., Fig. 4 in Reznikova et al. 2012). Due to its adaptive nature,
EMD was chosen as the most suitable method for processing
such sort of signals. We found that the intensity variations of
both quiet sun and sunspot regions at 171 Å (coronal level) and
304 Å (chromospheric level) indeed behave randomly and can
be represented as a superposition of two noise-like processes
with the corresponding power law index α ≈ 0 (the white noise
component) at periods shorter than 2 minutes, and α ≈ 1.2−1.3
(the reddish noise) at longer periods. These findings are in con-
sistence, e.g., with the results obtained recently in Ireland et al.
(2015) with the use of the mean Fourier spectra for the coro-
nal emission at 171 Å and 193 Å wavelengths. There, the power
law indices were found to range from 1.8 to 2.3 for both wave-
lengths, depending upon the analysed region. In addition to the
coronal (171 Å) and chromospheric (304 Å) lines, in this paper
we also analysed the emission intensity variations at 1600 Å,
corresponding to deeper layers of the solar atmosphere. Simi-
larly to the upper levels, signals coming from 1600 Å emission
layer are also seen to be well represented by a combination of the
white and coloured noises. However, the corresponding coloured
component experiences dramatic change in the power law index
from about 0.86 to 1.33 when transiting from the quiet sun to the
sunspot atmosphere. The latter means the domination of a low-
frequency processes deep inside the sunspot atmosphere, while
characteristic frequencies for the quiet sun area decrease with
height. In contrast with the earlier works where the variations
of slopes of the high-frequency spectral tails (at periods shorter
than about 3 min) were considered (see, e.g. Deubner & Fleck
1990, Fig. 5; Woods & Cram 1981, Fig. 1; Orrall 1966, Fig. 4;
and Evans et al. 1963, Fig. 3), we studied the evolution of the
spectral slopes from the photosphere up to the corona in the ex-
tended range of periods up to 100 min. In addition to the ran-
domly distributed background processes, groups of IMF with
energies which are located significantly above the noise level,
were also clearly detected by the method. In particular, their pe-
riods range from two to four minutes (for the sunspot regions)
and may be clearly associated with 3-min sunspot oscillations.
For the quiet sun region observed at 1600 Å, the energy distribu-
tion peaks at about four to five minutes, which can be considered
as a manifestation of the p-modes.

We also calculated the mean Fourier spectra for the same
data sets which were used in the EMD analysis. Results obtained
with the Fourier technique are completely in accord with those
obtained with EMD. In particular, the mean Fourier spectra were
also found to contain the power-law-like regions at longer peri-
ods and tend to a flat shape at shorter periods, meaning that they
also could be represented as a combination of the correspond-
ing coloured and white noise-like components. We recall that by
definition the EMD and Fourier techniques are essentially dif-
ferent and independent spectral approaches based upon different
principles and intrinsic properties. Hence, a full agreement be-
tween the results obtained separately with these two methods in
the paper evidently confirms the ability of EMD to detect ran-
dom processes in solar signals, and justifies its applicability.
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