The turbulent electro-motive force

Topics:

1. ldeas to construct the mean electro-motive force without calcu-
lations

2. Estimation of turbulent effects



Mean-field equations

0(B) = Vx(E+{(U)x(B)),

%p?ﬂsm?@ﬂ = —V-(rsin@(p'f¢ +  rsindQ(U) —
o)
(2L (@) 9)) ) = T EE) - TﬁgU ) _£.vx(B)

Effects of the turbulent flows and magnetic fields:

E = (uxb),
~ 1

Ty = (uuj) — 4ﬂp(<bb> 03 (0%))

Ff = —cppTkVi(s), rij= (uiu;)



= (u X b)

We have to solve:

Ob = V x(ux/( <U>><b )4+ nV2b+V x (uxb—E)+&
B))
o = 2p(ux ;- Vi 4+ B ) vapuit g5

- V jlPui(U) +uj(Ui)) +V (pTlJ o)

+ 47TV (bi(B;) +bi(B;))

Problems:

e Nonlinearity results to a closure problem: to resolve b evolution
we have to know u X b, and same for u

e Let us try to guess the general expression for (u X b)



Reflection symmetry 426

Reflection symmetry is a fundamental property of the basic physical
laws. This means that the MHD laws do not change under reflec-
tion at arbitrary point about arbitrary plan. This is so called parity
conservation.

Meanwhile some of the quantities and mathematical operators
depend on orientation of the coordinate frame, e.g.:

Operator Geometric meaning
curl, V x closed directional loop
vector product, x oriented area
scalar-vector product oriented volume

of three vectors



Properties of the reflection symmetries, for arbitrary vectors: a, b, c

aref

—a, a" xb"=a x b,
Vxa = Vxa,
(a™/ xb"el).c¢f = —(axb)-c



Parity(P) symmetry of the basic quantities
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Using the Maxwell equations

c Ot
1O0E \V ]_D,_4_7TJ7 V-E=47p
c Ot C

consider reflection transformation about the origin x =0:

u(x,t) = —u(—x,t), E%(x,t) = -E(—x,1),
Jrel(x,t) = —J(—x,t), B (x,t)=B(—x,1)

In the “old school” physics it is common to call vectors like u, E,
and J as the polar vector (normal vector, or simply vector) and



the vectors like b, B, and A =V ! x B are called - axial vectors
(pseudo-vectors). Therefore,

e The mean electromotive force : £ = (uxb) is a vector

e u-V xu (kinetic helicity), b-V x b (current helicity), u-b
(cross-helicity) and A - B (magnetic helicity) are all pseudo-
scalars

e Sequence is as follows: O-rank: scalar is P invariant and pseudo-
scalar changes sign; 1-rank: pseudo-vector is P invariant; 2-rank
tensor is P invariant, pseudo-tensor isn't.



Expression for € 6/26

From induction equation:

o _

5 V x ({(U) x b+ux(B)+uxb—(uxb))

e we see that, in general we can assume the functional relation:
b~b(u,{U),(B))

and b as a linear to (B) (if we don't take effects of (B) on u)

e Assume (?;,;brv2 and 0, (B) ~ \B)

7 7 and the scale separation
gC << LCL! ’ ¢




e Then the set of vectors to construct (uxb) may consists of,

. the large-scale field: (B), V x (B) and perhaps 2,V x (U ),
Vp

ii. the average effects of the turbulent fields: V (u92), W (592,
etc.



Expression for € 726

Consider the isotropic background turbulence, to satisfy parity we
put:

£ = (uxb)=a(B)+Vx(B)—nrV x (B) (1)
+ TQ+ M QA x VX (B))+ 5" (Vx(U)) xV x(B))+

5W

Here o and T should be pseudo-scalar and 7, §* -usual scalars.

The « effect is a turbulent generation effect and 1 is a turbulent
diffusion. They can be estimated from solution of equations for
fluctuating field.



V is turbulent pumping. How we guessed it? In tensor notation the
first line of Eq(1) can be rewritten in more general and shorter form:



The most basic £ 8/26

4
Ei = aij(Bj) +1ijnVj(Bn) + O(f)

Here, we used the standard notation for summation about the
repeated indices. Any a;; can be decomposed

1 1

aij = 5laij +aji) + 5 (ai; — ;i)

The most simple symmetric tensor is the Kronecker delta symbol:
0;;=04i. The most simple antisymmetric tensor is the Levi-Chevitta
symbol &;;, , which is antisymmetric about odd number permutation



of all indices:

/100\ /000\ /00—1\ /010\
5¢j: 010 ,Eljn: 0 O 1 ,82jn: 00 O ,Egjn: —1 0 0
k001) k0—10) k100) kooo)

Put, %(CYZ']‘ — @ji) :Emj‘/;z, and Mijn = NTEijn - Therefore, in following
reflection symmetry rules we rewrite: & = ad;;(B;) + €V, (B;) +
n€in; Vi (By) which is identical to

E=a(B)+V x(B)—nrV x (B).



Calculation 0/26

b = Vx(ux(B))+nVb+Vx(uxb-—&)+&
poru; = 2p(u X §2); — Vz'(p—F (béf)) ) +vApu;+ fi+§i

_ . 1
+ V(oL — pTyy) +=V,(bi(B;) + bj(B;))
Comsider the linear effects of (B) on the backround turbulence

sob—b+b? and uw— u+ u'? after subtraction the background
turbulence MHD equations we get

V x (u® x (B))+nV2+V x (u'® xb+ux b &)

<b+b(°’>°<B>>>+mpm+

O:b

pou; = 2p_(u(0) x ); — V¢<p+ ( o






High Reynolds number limit

We apply ideas taken from the mixing-length approximation and the
dimensional analysis. It is interesting to consider two cases:

|. The large Reynolds and magnetic Reynolds numbers. In this case
we neglect the effect of microscopic diffusivity n and replace the

induction term in equation for fluctuating magnetic field by following
one:

Ob —V x (u<0>><b+u><b<0>—5)ﬁ_

Te

(0)
2 = [(B)V)u® — (u®-V)(B)] +

Tc Tc

)



u 2u® % Q — V<(<B>’b(0))) + (<B>‘V)b(0) 1

T, - 47 p 47 p

bO. v ©)
( . L(B) + 4 shear + NL((B))- -

20

Note, that the pressure fluctuations are inside of — . The effect of

magnetic pressure, —V ((B)-b")) /475, can be ignored, as well, for
V - u=0. The turbulent electromotive force is

Ei=¢ijn( <U§-O>bn> + <“jb7(zo>>)



Calculation of £, Re,Rm»1

Let us consider the isotropic turbulence : <u uj(-0)> =

1
1 37

same for the magnetic fluctuations: <b,§0)b(-0)> = 15¢j<b(0)2>. Col-

lecting the same type of terms we get

E = tip(By) + NinpVn (B,) + 27, (u?-bO) Q.



where we assume that (u'” x b”)) =0 and, perhaps, (u!".b")) £
0(Yoshizawa &Yokoi 1990 ; Brandenburg & Raedler 2008).



Re.Rm>»1. turbulent diffusion

We have,

E = tip(By) + NinpVn (B,) + 27, (u?-bO) Q.

where we assume that (u'? x b)) =0

IRAVAIY
Te 3 0)2

The tensor 7, is the turbulent diffusion, because &,V (5,) =
(V x (B));. The magnetic fluctuations of the background turbu-



lence, <b(0)2>, which can stem from the small-scale dynamo, amplify
the turbulent diffusion.



The alpha effect and pumping 13/26

For the case of the isotropic background turbulence. The only
possible general view expression of £ s

E=(uxb)=a(B)+T Q2 —nrV x (B) + pumping(V<u(O>2>,
(VH02)) ..

We already got I' = 276<u(0)-b<0>> and UT:%(<U(O)2> +si7rp<b(0)2>)

The alpha effect and turbulent pumping can be formally rewritten
as follows

& = an(By) =5+ ap){By) + 30— ) (B

= adip(Byp) + mpVn (Bp)



Where, to get the last term, we use (aip, — api) = EinpEnml@ml, and

1 .
V, = —5Enml@ml. So, to get pumping we have to calculate 1}, =
1

—5Enml@m] - The direct calculation of « can be tedious. Instead, ..



The kinetic part of o 14/26

We have

0 ((B)-V),(0), (0

+ 27 (W@ x Q)b 4 e, e bOp.
(V). V) 0 0),(0
+  TcEijn P <Bj>b7(l>—l—7'c<€ijnu§. )bfl)

Denote:



for the kinetic part of the « effect in the Cartesian coordinates for
Isotropic o we get,

&1 = Bi(wa13 — w312), Eo = Ba(wso1 — w123), E3 = B3(wize — wa31)

Using isotropy condition we arrive to (ws13 — ws312) = (w321 — w123) =
(w132 — wa31):

) _ 1
o = §(w213 — w312 + W321 — W23 + W132 — W231)
1
= _§(w123 — W132 T W231 — W213 + W312 — ’LU321)

In Cartesian coordinates u'” . vV x ul? = u§0>v2u§0>-u§0>v3u<0> —
w123 — W132-

Thus we have:



Intepretation of the kinetc « effect

Figure 1. Generation of € align to (B) by means of the kinetic helicity, Krause and Raedler
(1980)



The « effect by means of rotation and strat-

ification 16/26




Parker (1979); Krause & Raedler (1980);
Raedler & Stepanov (2006)
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Figure 2.



Algebraic a quenching 17/26

Magnetic field prevents motions
across and quenches effects by
factor B~! in each direction,

Proctor (2007)

Figure 3.




The magnetic part of «

M_ _Tc . /p0)g 1(0)
& = 47Tp5un<bn vpbj ><Bp>
The same calculation in Cartesian coordinates for the magnetic part,
(b7 ,b Y
_ n J .

&1 = Bi(ws12 — wa13), Eo = Ba(wio3 — w321), E3 = B3(was1 — w132)

Using isotropy condition we arrive to (w319 — wa13) = (w123 — wW391) =
(wa31 — w132):

1
RO) — g(w312 — Wa13 + W123 — W321 + W231 — W132)



1

N §(w123 — w132 + Wa31 — Wa13 + W12 — W321)

(M) _ _Te3,(0) . (0)
a 55"V xb¥)

So, the total alpha effect reads (Frisch, Leorat & Pouqet 1976):

(0) (0)
o_ _Te[ 0) o)y _ b7V xb)
E ((u V xu') - (B)




The nonlinear o effect

Figure 4. Bi-helical magnetic field Blackman & Brandenburg (2001)

T, <u(0) VX u(0)> <b(0) VX b(0)>
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Re,Rm»1, turbulent pumping

The turbulent pumping is the skew symmetric part of

IRAVANIY
0 0
Qip — Tcgijm<uj(- )Vpufn)> + Tcgijm< 77147:[90] >
To get pumping velocity we have to compute 1}, = —%&}npaip. Note,
that
€nipfijm — €ipncijm — (5pj5nm — 5pm5nj)
Then

5nip€ijm7-c<u<'0)vpu§2>> - (5pj5nm B 5pm5nj>7-c<u<'0)vpu£2)> —

J J

:Tc<u<0)vpuff)> — <u O)Vpu(0)> — chp<u(0)u7(10)>

p n D p



p

Tc<u(0)vpu7(10)> - %vp5pn<u<0)2>

where we employ conditions for isotropic turbulence identity,

<u(0)u(0)> _ %5pn<u(0)2>-

P n

Repeating this for the magnetic part we get

If there is equi-partition between the kinetic and magnetic fluctua-
tions of the background turbulence then

(")
drp




V = —%VnT is the diamagnetic pumping discovered by Zel-
dovich(1956)



Diamagnetic pumping 21/26

£ =V (B) Ve —%w
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Figure 5. Diamagnetic pumping because of the nonuniform turbulent mixing
(Zeldovich 1956), picture from Vainshtain (1980). On Figure, the turbulent mixing
decrease outward, therefore the effective pumping work outward.



Re,Rm»1, £ (overview)

Finally, the mean electromotive force for the case Re,Rm>»1,the
isotropic background turbulence, and if (u'”- b)) +£0,

E=(uxb) = aB)+TQ+ VD (B) -9V x (B),

b©. ¥ x b®) )

a = —<[ (u®. v xu®) - < I

= {0+ g0



Magnetic fluctuations try to cancel the turbulent generation and
pumping effects and increase the turbulent diffusion.



Low Reynolds number limit

lI. The small magnetic Reynolds number. In this case, the evolution

of b is defined by the magnetic diffusion time tn:% and similar for
the turbulent flow,i.e.,

£ 0) _ (2,0, £ 0)
b= 77[(<B> V) ( V)<B>]+77

| 4

L2 <(<B> <°>)) L 22 ((B)Y) )
v 47 p 1% 4P

2¢% (b).v) 202 o)
T (B)—I— —u'"” +shear + NL((B))- -




The turbulent electromotive force is
52' — Ejjn( <u(0)bn> -+ <ujb7(20)>)

We can use the results obtained for the limit Rm,Re»1 and substi-

20°
tute 7. by TI/ZT



Re Rm«l |, &£ 24/26

E=(uxb) = a(B)+TQ+ VD x (B) -V x (B),




The level of the magnetic perturbations s

For the case of the large Re,Rm»1:

(b%) ~ T([((B)-V)u'?]?) ~ %<u<0>2><3>2 ~(B)*

C

The more accurate calculation using the turbulent spectra results to
(b%) ~In(Rm)(B)?, see, Rogachevskii (2021).

For the case of the large Re,Rm«1:

(b%) ~Rm*(B)*



Summary 26/26

e The general structure of the mean electromotive force can be
guessed from the reflection symmetry properties of £,U and B.

e Using scale-separation and the semi-qualitative analysis for the
isotropic background turbulence we found

E=(uxb) = a(B)+T'Q+ VD (B)—nV x (B),

generation transport dif-
fusion

e The accurate estimation of «, I', V(¢ and N requires a thor-
ough solution equations for the turbulent flows and magnetic



fields:

Double-scale Fourier, using either quasi-linear
approach(SOCA, FOSA) or equations for the second order

moments and 7 approximation

Test-field method (numerical solution of equation for w and
b for given (B).

Data assimilation and approximation of & from results of
the global convection simulations. See further information in
Brandenburg et al (SpSciRev2023)



