Mean-field solar dynamo models

V. V. PIPIN, ISTP, Irkutsk,
Russian Academy of Science




Topics:

*Derivation

*Dynamo models in the
spherical shell

*Eigen value problem
*Basic properties
*Nonlinear effects



Derivation

We consider the one-fluid ideal magnetohydrodynamics equations

% = VW % (pxB)
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Then decompose for the sum of the mean and fluctuating parts:
v=U)+u; B=(B)+b;s=(s)+5,...

Assume (%bwf and 0, (B) ~ <f>

to construct (uxb) may consists of

i. the large-scale field: (B), V x (B) and perhaps 2,V x (U), Vp

, and the scale separation /. < L,.Then the set of vectors

ii. the average effects of the turbulent fields: V (u("2), W (592}, etc.



Equations driving the turbulence:

The governing equations for fluctuating magnetic field and velocity are written in a
rotating coordinate system as follows:
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where ®, §§ are nonlinear contributions of fluctuating fields, m = pu, G = Vlog p 1s the
density stratification scale of the media, p 1s the fluctuating pressure, €2 1s the angular
velocity responsible for the Coriolis force, V is mean flow which is a weakly variable in
space, f 1s the random force driving the turbulence.

Statistics of the random forces, and, governing the turbulence is given. We solve these equations
forming the equations for the second order correlations and using the scale separation approxi-
mation (see analytic results Pipin2008).



To compute £ 1t 1s convenient to write the MHD

equations 1n Fourier space:
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Equations to solve: the second order
correlations 1n Fourier space
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Here, is the evolution equation for corelation of the fluctuating momentum m = /pueik'mda:,

and fluctuating magnetic field b= /beik'mda} , Thj; is the third order correlation. Note, that,

the turbulent parameters are in convolution with the large-scale field B and V'



Tau approximation

Minimal tau-approximation, it 1s valid for Rm, Re> 1
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It 1s assumed that the third-order moments relax to the
second order ones



Dynamo equations

WT{B_VX (E+(U) x (B)),€=(uxb)

The expression for £ is compatible with scale separation approximation and symmetry of MHD
fields (Krause&Raedler 1980):

Ei = (aij+7i)(Bj) + mjkVi(Bi) + -+ (x J, W x J,£,T)

Axisymmetric magnetic fields
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After substitution into induction equations we get
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Mean electromotive force

Ei = (ogj+73){Bj) + MV (Bk)
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Functions ﬁ:”(Q ) were defined by Pipin (2008), Q* = 27,9,
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Distribution of the dynamo parameters in the SCZ
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Figure 1. (a) The meridional circulation (streamlines) and the angular velocity distributions; the magnitude of circulation velocity is of 13 ms™ on the surface
at the latitude of 457; (b) the w-effect tensor distributions at the latitude of 45°, the dash line shows the convection zone boundary; (c) radial profiles of the
convective turnover time, T, (left y-axis) and the Coriolis number, €27, (right y-axis); (d) radial dependencies of the total, ny + 5|, and the rotational induced
part, )1, of the eddy magnetic diffusivity, the eddy viscosity profile, v7 and the the € diffusivity profile for ag = 1; herealter we employ NUMPY/SCIPY (Harris
et al. 2020: Virtanen et al. 2020) together with MATPLOTLIB (HUNTER 2007) for post-processing and visualization.



Dynamo modes, A0
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1D models



Simple model, waves on the spherical surface

To elucidate basic properties of the axisymmetric dynamo, we consider a reduced dynamo model
in which the radial dependence of the magnetic field is disregarded, and the same for the flow.

In this case, the induction vector of the large-scale magnetic field is represented in terms of the
scalar functions as follows:

<B>:B(t)—|—B(P):e@B+ P JsinfA

0
R2sinf 96 EA’

Consider the isotropic « effect and diffusivity, and write equations for some radial layer » = R:
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See Noeys et al 1984, Jennings et al 1990, Moss et al 2008



1D model (Jennings et al 1990, Kitchatinov et al 1994)
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Fig. 1a and b. Bifurcation diagram for a 1-D dynamo model without
radial extension a without curvature and b with curvature. Stationary
solutions are denoted by “st” and oscillatory ones by “os”
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The long-term cycle dynamics with fluctuating
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Issues of the ’no r”” dynamo models

For dynamos in the thin shells radial diffusion will eventually dom-

inate over the latitudinal diffusion because the scale of the mean-

field is smaller in radial direction than in the latitudinal one. The 1D
. . ’B B

models fail to reflect this, the replacement 7, 57 reduce a

key physical process to a single parameter. ¢’ g




Axisymmetric vs nonaxisymmetric dynamo
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Fie. 16.11. Model including x, and w-effect; &, given by (16.4a) and (16.0);
y-profile of type a, a, | d,y =1, 2,0 = 0.5, dyg = 0.4; w given by (16.7),
2o = 0.0, dy, = 0.4, Marginal values of C, in dependence on C,,. As for £ the

explanations given with figure 16.7 apply

Krause &Raedler 1980.

1)A0,SO have a lower
threshold than A1,S1

2) Increase C, results
in increase the
instability threshold for
Al,S1

3)For the Sun,
C.>>C,



Axisymmetric shperical dynamo
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Axisymmetric dynamo, dynamo instability analysis
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Figure 2. (a) Growth rates of the first six eigen odd dynamo modes for the solar type dynamo model with the local mean electromotive force, the x-axis show
the maximum magnitude of the 4 component in the convection zone; colours mark the different eigen modes; (b) shows the eigen frequency for each dynamo



Solar dynamo waves, axisymmetric model
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LATITUDE

Torsional oscillations
and “extended cycle”

*Solar zonal oscillations of angular velocity as B* effect of MA on the angular
momentum transport.

*Though, the mechanical action of the large and small-scale Lorentz forces
modulated by solar cycle being the essential part of the play, it does not explain
the extended mode of the torsional oscillations.

*“Extended cycle” shows itself in many others parameters of SA
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Courtesy of Roger Ulrich (http://obs.astro.ucla.edu/torsional.html)



Overview from SOHO and SDO
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Figure 1. Observational results from Solar and Heliospheric Observatory/MDI and Solar Dynamics Observatory (SDO)/HMI. Shown are the time-latitude diagrams
of (a) evolution of radial magnetic field during the last two solar cycles; (b) zonal flow velocity (“torsional oscillations™); (¢) zonal acceleration calculated after
applying a Gaussian spatial and temporal filter, where arrows indicate the start of extended Solar Cycles 24 and 25 at about 55° latitude, defined as a starting point of
the zonal deceleration (blue areas); and (d) overlay of the zonal acceleration (color image) and the radial magnetic field (gray scale) (after Kosovichev & Pipin 2019).



Conservation of angular momentum

%ﬁrz sin® Q) = — V- (r sin 6 (ﬁqu—H“ﬁ sin HQﬁm))
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For a turbulent flow under rotation and magnetic field:

. o * (Kitchatinov et al 1993, Kueker et al
Awk X f(813k7 () ) ‘Bl AR ) 1996, Kitchatinov& Ruediger 2005)




Simple model

Consider the spherical coordinate system: . . ©; axisymmetric rotational flow:
(0,0, rsinf2(r, 0)); the toroidal field is winding from poloidal by DR (neglect
turbulent effects):

agp = (B V)(rsinb), (1)
R (P)
d];f -

Consider a perturbation of the azimuthal component of equation of motion (pre-
vious slide) and let us B” is uniform

. B 5208 | .
présin“f 5T = (B )-V)(rsmﬁBip)

= (B”.V)2(r2in26Q)



00

= (B'P). V)2(r2sin%6(})

présin?d

if B? is cyclic, e.g., the solar magnetc cycle than the frequency of 0€) is twice

as compared to the cycle of B

Amplitude of acceleration:

OrsingsQ _ |BW)P?
ot 27p

()sinf

For |B,| ~1G, 2=2.86-10""Hz, p~0.1¢g/cm’ (bottom of the SCZ) we estimate
the acceleration to be ~10~"m /s* . This is the minimum! because for the top
of the convection zone we would have ~107m /s*!



Meridional circulation
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Dissipation & advection
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Heat transport

— (03 . OU;
pT | =+(U-V)s)=—V-F+F") -1 E-(VxB).
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FeonY — —CpﬁT/ﬁj Vs, (Kitchatinov et al 1993, Pipin 2004)
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Kij = KT (95,&1) (8) 6 () 85 + 6, (8) &y () QZJ> |

Mixing length u = — . p, T, ¢, etc. from
approximation: 2 Cp or MESA solar interior
model

/ / \/ o 0s  Reference state of g,




Boundary conditions

Stress-free at the surface and solid body rotation below
overshoot region (see, Pipin&Kosovichev 2020)

Given heat flux at bottom & black-body radiation at the
top

Zero B at the bottom of overshoot

Either vacuum BC, or more “realistic” BC with
penetration of toroidal B to the surface and the
potential or pure poloidal field outside (Moss et al 1992)



Driving forces



Conservation of angular momentum

%ﬁrz sin® Q) = — V- (r sin 6 (ﬁqu—H“ﬁ sin HQﬁm))
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For a turbulent flow under rotation and magnetic field:

. o * (Kitchatinov et al 1993, Kueker et al
Awk X f(813k7 () ) ‘Bl AR ) 1996, Kitchatinov& Ruediger 2005)




Driving forces

o= —prslmev- (rsin@ﬁ’i‘(;g (B:O))
F, = _prslmev' (rsinp {Ty ~ Ty (B=0)}).
F = prslme V. <rsmeB—i¢> ,
F® = % (B-V) (V xB), - % (V xB)-v)B,
o mD
¢
Fy = _ﬁrslin SV (7“2 sin emﬁm),
i = ey - (o ()

See details in Pipin & Kosovichev 2019

Hydrodinamic inertia
force

Lorentz force caused by
small-scale perturbations
of mean field

Toroidal Lorentz force of
the LS MF

Poloidal Lorentz force

Toroidal force form
meridional circulation

Toroidal force from
magnetic /A effect



Dynamo induced forces
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The torsional oscillations results from a balance of different forces. Acceleration
from each of them exceed the balance more than order of magnitude!



Conditions for the extended mode of
the torsional oscilltions

We find that extended mode of the torsional
oscillation is induced if: there are

1) the magnetic cycle overlap

2) dynamo induced perturbations of the convective
heat flux

3)eftect of MC on the TO is taken into account



Torsional oscillations In

convection zone

1) B effect of the dynamo
on the heat transport
produces the track of 4-5
meridional circulation
perturbation cells along
latitude

2) The mechanical action
from quenching of turbulent
stresses and the mean
Lorentz force cause the
zonal variations of rotation.
3) The track of meridional
circulation perturbation cells
transports zonal variations
from pole to equator





Iatitude

Comparison with observations

Radial magnetic field and zonal acceleration
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Summary

* The mean-field evolution equations can be derived from the
standard MHD equations. The estimations of turbulent
effects for the case of high Re, Rm is not a problem, as well.

* Depending on the task being solved we can choose a
simplification of the dynamo model, e.g., 0D, 1D, 2D, 3D
models can be applied

* The dynamo 1s a large-scale instability which require the
critical threshold

* The 11-th and 20 years torsional oscillations of the Sun
results from the nonlinear balance of the dynamo induced
azimuthal forces 1n the presence of the magnetic
perturbation of the heat transport inside the convection zone
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