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INTRODUCTIO N TO SPECTROP OLAR I METR Y

Spectropolarimetry embraces the most complete and detailed measurement and
analysis of light, as well as its interaction with matter. This book provides an
introductory overview of the area, which is playing an increasingly important role
in modern solar observations. Chapters include a comprehensive description of
the polarization state of polychromatic light and its measurement, an overview of
astronomical (solar) polarimetry, the radiative transfer equation for polarized light,
and the formation of spectral lines in the presence of a magnetic field. Most topics
are dealt with within the realm of classical physics, although a small amount of
quantum mechanics is introduced where necessary. This text will be valuable for
advanced undergraduates, graduates and researchers in astrophysics, solar physics
and optics.
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Preface

For the object of the philosopher is not to complicate, but to simplify and analyze, so as
to reduce phenomena to laws, which in their turn may be made the stepping-stones for
ascending to a general theory which shall embrace them all; and when such a theory has
been arrived at, and thoroughly verified, the task of deducing from it the results which ought
to be observed under a combination of circumstances which has nothing to recommend it
for consideration but its complexity, may well be abandoned for new and more fertile fields
of research.

—G. G. Stokes, 1852.

Were one asked for a concise description of most astrophysical tasks, one possi-
ble answer might be ‘understanding the message of light from heavenly bodies’.
Light – or electromagnetic radiation – is the astronomer’s main (almost his sole)
source of information. The statement that nobody can measure the physical pa-
rameters of the solar atmosphere, although at first sight shocking, merely calls
attention to the fact that astrophysics is an observational rather than an experi-
mental science. This characteristic is often forgotten. We do not measure solar or
stellar temperatures, velocities, magnetic fields, etc., simply because we do not
have thermometers, tachometers, magnetometers, etc., that would permit in situ
measurements of these parameters. Rather, we are only able to measure light. The
astronomical parameters are inferred from these measurements, often with the help
of some laboratory physics. Thus, the reliability of such astronomical inferences
hinges on the accuracy of measurements of light. It is in this broad sense that
spectropolarimetry may be said to embrace all real measurements carried out by
astronomers. For, as is clear from the name itself, spectropolarimetry analyzes light
as a function of its two most important characteristics: wavelength and state of
polarization.

The basic laws or physical tools used in astrophysics are those already known in
the laboratory, but sometimes astrophysics offers new insights on how to proceed
in the laboratory. A beautiful example can be found in the subject of this book.

xi



xii Preface

Spectropolarimetry was born and mostly developed in the realm of astrophysics –
more specifically, in solar physics: the importance of magnetic fields in the overall
state of our star has been increasingly more appreciated throughout the course
of the twentieth century. Most (if not all) the observable manifestations of solar
magnetism have been polarimetric. Great efforts have consequently been made
in improving the accuracy of the measurements and in building a theory that
permits the analysis of such spectropolarimetric measurements. Both the instru-
mental and the theoretical developments are of use to a much broader com-
munity. Advances in spatial and temporal modulation of the polarimetric signal
achieved over the last two decades will doubtlessly be of interest for labora-
tory polarimetry. On the other hand, the theory of polarized radiation transport
not only helps in disclosing the physical parameters of the Sun and other stars,
but can be described as a cornerstone in our understanding of the interaction
between radiation and matter. It is with this mutual-benefit philosophy in mind
that this book has been written: though it is primarily intended for astrophysi-
cal applications, most of the concepts and developments described in the book
may be of use to other branches of science. The use of astrophysical examples
has been minimized as far as possible in order to give a general overview of the
topics discussed. Nevertheless, most of the particular examples are still from solar
physics.

Being a primordial property of the simplest (and ideal) form of light (the mono-
chromatic, plane, time-harmonic wave), polarization is (fortunately) a valid concept
and indeed a characteristic of measurable polychromatic light in the real world.
Hence, understanding the message of light necessarily implies (or should imply)
a polarimetric analysis of electromagnetic waves in order to exploit fully the in-
formation carried by them from heavenly bodies. The other important variable
characterizing electromagnetic radiation, frequency, has received wide and in-
tensive attention in many textbooks. Nowadays, the postgraduate student or the
young researcher has many authoritative monographs available in which spec-
troscopy is discussed thoroughly, in both the theoretical and the observational
and experimental aspects. This is not the case, however, for polarimetry, whose
details are seldom discussed, with very few exceptions. After an introductory
historical summary, the first part of the book (Chapters 2–5) is devoted to po-
larimetry and hence may be of direct application not only to solar physics but
to other branches of astrophysics and science in general. But if light and its
state of polarization are the primordial observables in astrophysics, the radia-
tive transfer equation (RTE) is crucial for deciphering that encoded information
in terms of the physical quantities characterizing the (polarized) light source.
Therefore, the second part of the book (Chapters 6–11) deals with the RTE
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for polarized light with particular emphasis on the case of magnetized solar
atmospheres.†

Since the present monograph was conceived as an introductory course for post-
graduate or advanced undergraduate students, the reader is assumed to be familiar
with such concepts as Maxwell’s equations and the Fourier transform. Neverthe-
less, I have decided to start practically from scratch in order to lay the foundations
on which the topics described are built. Therefore, a non-negligible amount of the
material presented here has been borrowed from other sources [special mention
should be made of the books by Born and Wolf (1993) and Stenflo (1994), and the
lecture notes by Landi Degl’Innocenti (1992)].‡

Although already pointed out in several works, certain paramount details of
polarimetry, such as sign conventions, the distinction between monochromatic
and quasi-monochromatic light, the coherent and incoherent superposition of light
beams, or the physical meaning of Mueller matrices, need particular attention within
the framework of a global description. The kinship between the scalar RTE for un-
polarized light and the vector RTE for polarized light (the former being a particular
case of the latter) is not emphasized often enough. Likewise, deep-rooted concepts
in the community, such as the height of formation of spectral lines often hide very
important clues to the correct inference of the physical properties of the observa-
tional target and should in many cases be forgotten. These are a few reasons that
justify the structure of the text.

In Chapter 2, some basic concepts are reviewed such as the description of light as
an electromagnetic wave, the monochromatic time-harmonic plane wave, the po-
larization tensor (or coherency matrix), the Stokes parameters of a monochromatic
wave, and the Poincaré sphere. Chapter 3 describes the polarization properties of
quasi-monochromatic light. Polychromatic light is introduced as a statistical super-
position of monochromatic light. Then, after defining a quasi-monochromatic plane
wave, its associated coherency matrix and Stokes parameters are described and
their meaning explained from the measurements viewpoint. Finally, the concepts
of degree of polarization, natural light, partially and completely polarized light are
defined. The transformations suffered by (partially) polarized light after interaction
with linear optical systems are dealt with in Chapter 4, where the Mueller matrices
and their properties and characterization are presented. A description of the basic
block components of a (solar) polarimeter follows, and the chapter ends by outlining
the way we measure, i.e., by describing both the spatial and temporal modulation of

† I use the term “atmosphere” in the plural because the Sun may be thought of as having many atmospheres,
depending on whether we are studying the atmosphere above a granule, an unmagnetized intergranular region,
a penumbral filament, an umbra, etc.

‡ See the references in the recommended bibliography to Chapter 1.
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the polarimetric signal. Chapter 5 provides a more in-depth treatment of specific
issues germane to solar polarimetry, such as environmental (seeing-induced and
instrumental) polarization, modulation and demodulation, and a description of cur-
rent solar polarimeters. Light propagation through low-density, weakly conducting
media along with absorption and dispersion phenomena are studied in Chapter 6.
The radiative transfer equation for polarized light is discussed in Chapter 7,
and the links with the more usual scalar equation for unpolarized light are estab-
lished. The symmetries and information content of the propagation (“absorption”)
matrix and of the source function vector in the local thermodynamic equilibrium
(LTE) approximation are also discussed in this chapter. After describing the proper-
ties that the Zeeman effect imprints on spectral lines, a specification of the elements
of the propagation matrix in the presence of magnetic fields and the formation of
lines in a magnetized stellar atmosphere are presented in Chapter 8. The solution of
the RTE follows in Chapter 9. The paramount astrophysical problem, namely, that
of finding radiative transfer diagnostics that enable the astronomer to interpret the
observables (the Stokes profiles) in terms of the physical parameters of the observed
atmospheres is dealt with in the final two chapters. Chapter 10 describes evidence
for the RTE as the most useful tool in magnetometry. First, the concept of height
of formation of spectral lines is discussed critically and a recommendation is made
that it be substituted by that of sensitivity of the lines to atmospheric quantities.
After linearization of the RTE, the so-called response functions (RFs) are shown to
describe such sensitivities fully and their main properties are outlined. Moreover,
the sensitivities can be extended to observable parameters derived from the profiles,
and through a theoretical generalization of the measurements, generalized RFs can
be defined as well. These generalized RFs are the root of the concept of height
of formation for measurements. Finally, Chapter 11 summarizes very briefly the
aim and the bases of the so-called inversion techniques that are currently the best
candidates for inferring the magnetic, dynamic, and thermodynamic properties of
solar atmospheres.

Contrary to customary usage, just a few references will be quoted within the text.
Instead, a bibliography is recommended at the end of each chapter. The number of
cited research papers has been reduced to a minimum but some of these have been
compiled purely because of their historical interest. By far most of the auxiliary
material the reader may need can be found in books or review papers.

Granada, April 2, 2002 Jose Carlos del Toro Iniesta
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1

Historical introduction

Más has dicho, Sancho, de lo que sabes —dijo don Quijote—; que hay algunos que se
cansan en saber y averiguar cosas que, después de sabidas y averiguadas, no importan un
ardite al entendimiento ni a la memoria.

—M. de Cervantes Saavedra, 1615.

‘You have said more than you realize,’ said Don Quijote, ‘for there are some, who exhaust
themselves in learning and investigating things which, once known and verified, add not
one jot to our understanding or our memory.’

Spectropolarimetry, as the name suggests, is the measurement of light that has
been analyzed both spectroscopically and polarimetrically. In other words, both
the wavelength distribution of energy and the vector properties of electromagnetic
radiation are measured with the highest possible resolution and accuracy. Thus,
spectropolarimetry embraces a number of techniques used in order to characterize
light in the most exhaustive way. Such techniques are ultimately based on a theory
that, from its beginnings in the closing years of the nineteenth century, finally grew
to maturity in the 1990s. Therefore, under the heading of spectropolarimetry we
will find several disciplines, which, despite being interrelated or rather, although
our aim is to stress their interrelatedness, may be considered independent.

A historical perspective is always helpful for grasping the importance of phys-
ical phenomena and their corresponding explanations. The main objective of this
chapter is to give a brief description of the salient events and findings in history
related to some of the independent disciplines covered in this book. In particu-
lar, polarization phenomena and their treatment, and the Zeeman effect, both on
the Sun and in the laboratory, have been especially relevant not only in spectropo-
larimetry but in the development of natural sciences and are thus deserving of this
brief introduction.

1



2 Historical introduction

As we shall see, polarization phenomena provided the most important observa-
tional evidence that finally helped to decide between the corpuscular and undulatory
theories of light. In its turn, the Zeeman effect was not only a cornerstone in the de-
velopment of quantum mechanics but also the key to the discovery and later study
of extraterrestrial magnetic fields.

1.1 Early discoveries in polarization

Like many other discoveries in physics and science in general, polarization was
brought to the attention of the scientific community quite by chance. A mariner
returning to Copenhagen from Iceland brought back several beautiful crystals of
what we now know as Iceland spar, or calcite. Some of these crystals, it seems,
fell into the hands of Erasmus Bartholin, a Danish physician, mathematician, and
physicist, who at that time (1669) was a professor of medicine at the University of
Copenhagen. Bartholin observed that images formed through these crystals were
double. Moreover, when the crystal was rotated, one image remained in place
while the second rotated with the crystal. He rapidly interpreted the phenomenon
in terms of rays entering the crystal being immediately split into two, one of which,
being stationary during rotation, he termed the “ordinary ray”, and the other – that
experiencing the crystal rotation – he called the “extraordinary ray”. As we shall
see later, these terms are still in use.

This discovery was later taken up by the Dutch mathematician, astronomer, and
physicist Christiaan Huygens, who had no problem in explaining the double refrac-
tion with his construction of propagating wavefronts (1690). At any point within
the crystal, the light disturbance generated two wavefronts, a spherical one for the
ordinary ray and a spheroidal one for the extraordinary ray. Besides this explana-
tion, he contributed the important experimental discovery that the doubly diffracted
rays behaved differently from ordinary light when entering a second crystal. De-
pending on the relative orientation of the two crystals, double refraction may or
may not take place again, thus producing (or not) four final rays. He was not able,
however, to provide a comprehensive explanation for this new phenomenon. Inter-
estingly, it was Sir Isaac Newton who in 1717 presented the first ideas concerning
the reason for double refraction. According to Newton, ordinary light seemed to
have the same properties in all directions perpendicular to the direction of propa-
gation, while doubly refracted rays seemed to “have sides”, i.e., to show different
properties in different directions in a plane perpendicular to the direction of prop-
agation. Today, we know that this is qualitatively true. However, for Newton these
peculiar transversal properties constituted an insuperable objection to accepting
the wave theory of light; at that time, accepting the wave theory implied accepting
similarities between light and (longitudinal) sound waves.
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Most of the scientific debate concerning optics during the eighteenth century
was between the rival corpuscular and undulatory theories but double refraction
was still a major problem. The undulatory theory started to gain reputation by the
turn of the century with the work of the English former physician Thomas Young.
Apart from his great discovery of the law of interference in 1801, Young used dou-
ble refraction as an argument for defending the undulatory theory. On Young’s sug-
gestion, in 1802 William Hyde Wollaston studied experimentally the accuracy of
the Huygenian construction for the extraordinary ray and found remarkable agree-
ment, although the existence itself of two rays in a single substance was still not
completely understood. To get an idea of the importance of the problem suffice it
to say that in January 1808 the French Academy proposed “To furnish a mathemat-
ical theory of double refraction, and to confirm it by experiment.” As the subject
for the 1810 physics prize. One of the contestants was Etienne-Louis Malus, an
engineering officer in Napoleon’s army, who happened to be analyzing solar light
reflected by a window through a rhomb of Iceland spar when the two rays showed
different intensities! He rightly concluded that the properties hitherto attributed
to crystals could also be produced by reflection of light in a variety of substances
and he communicated his results to the French Academy by the end of that year,
when he coined the term polarization. Yet wave-theory defenders were unable to
abandon the analogy with sound waves and the debate kept up for some years:
including polarization phenomena within that theory was still necessary. The so-
lution to the puzzle took 9 years, during which a number of discoveries occurred.
In 1811, Dominique François Jean Arago, a French physicist, discovered optical
rotation and in the following year he invented the pile-of-plates polarizer. Also in
1812, the Scottish physicist David Brewster discovered the law named after him
concerning polarization by reflection, and the French physicist Jean-Baptiste Biot
discovered positive and negative birefringence in uniaxial crystals.

During a visit to Young in 1816, Arago mentioned a new experiment he and
Augustin-Jean Fresnel had recently carried out. The result was that two light beams
polarized at right angles do not interfere as two rays of ordinary light do, and
they always show the same total intensity when reunited, no matter what the path
difference for the two beams. This experiment provided Young with the much-
sought-after key to the link between the undulatory theory of light and polarization
phenomena: the transversality of light vibrations. In 1817, first in a letter to Arago
and then in an article for Encyclopaedia Britannica, he explained that the assump-
tion of light oscillations perpendicular to the propagation direction fully accounts
for the “subdivision of polarised light by reflection in an oblique plane”. Young’s
ideas, communicated by Arago to Fresnel in 1819, were quickly realized by the
latter as the main explanation for their experimental results and in fact for all the
polarization phenomena known until then. Fresnel rapidly interpreted natural light
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as a superposition of light polarized in all possible directions and polarization as a
manifestation of wave transversality:

So direct light can be considered as the union, or more exactly as the rapid succession, of
systems of waves polarised in all directions. According to this way of looking at the matter,
the act of polarisation consists not in creating these transverse motions, but in decomposing
them into invariable directions, and separating the components from each other; for then,
in each of them, the oscillatory motions take place always in the same plane.

These results on polarization laid the foundation for Fresnel’s further important
discoveries in optics.

1.2 A mathematical formulation of polarization

In his remarkable paper of 1852 entitled “On the composition and resolution of
streams of polarized light from different sources”, George Gabriel Stokes, Lucasian
Professor of Mathematics at the University of Cambridge, established a mathe-
matical formalism ideal for describing the state of polarization of any light beam.
Moreover he demonstrated several of the most important properties of polarized
light, among which he noted the following:

When any number of independent polarized streams, of given refrangibility, are mixed to-
gether, the nature of the mixture is completely determined by the values of four constants,
which are certain functions of the intensities of the streams, and of the azimuths and ec-
centricities of the ellipses by which they are respectively characterized; so that any two
groups of polarized streams which furnish the same values for each of these four constants
are optically equivalent.

Those four constants referred to by Stokes are what we currently know as Stokes
parameters. Unfortunately, the usefulness of the formalism and the importance of
the Stokes theorems seems to have been ignored by the scientific community dur-
ing the following 80 years. In 1929, in a very complete study of the partial polariz-
ation of light, the French physicist Paul Soleillet described the Stokes parameters
and used them throughout. Interestingly, in the third part of this very paper, a for-
mulation is presented of a theory of anisotropic absorption that is nothing less than
the construction of an equation of transfer for polarized radiation. Unfortunately,
this paper is still fairly unknown by the astrophysical community. Eighteen years
later, in 1947, in his famous series of papers on the radiative equilibrium of stellar
atmospheres, and certainly unaware of Soleillet’s work, the Indian-born American
astrophysicist Subrahmanyan Chandrasekhar published a summary of Stokes’s re-
sults, emphasizing the importance and usefulness of the formalism which turned
out to be particularly well suited to the formulation of a radiative transfer equation
in a stellar atmosphere.
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One year later, in 1948, Hans Mueller, a professor of physics at the
Massachusetts Institute of Technology devised a phenomenological approach to
describing the transformation of Stokes parameters by means of 4 × 4 matrices
(nowadays known as Mueller matrices). Since then, Mueller’s approach has been
extensively used for dealing with partially polarized light. A precursor of this for-
malism can be found in a paper by Francis Perrin (1942). A few years before
Mueller’s work, between 1941 and 1947, the American physicist Robert Clark
Jones presented his formalism to describe totally polarized light and the transfor-
mations between any two totally polarized light beams.

1.3 Discovery of the Zeeman effect

When spectral lines are formed in the presence of a magnetic field, they widen
or split into differently polarized components. This phenomenon is known as the
Zeeman effect, in honor of its discoverer, the Dutch physicist Pieter Zeeman, who
in 1896 found a conspicuous widening of the sodium D lines after switching on
an electromagnet. But the origins and precursors of this discovery date back to the
middle of the nineteenth century, as does the observation of this particular effect
over the surface of the Sun.

In 1845, Michael Faraday discovered that linearly polarized light streaming
through a transparent isotropic medium subject to a magnetic field changes the
direction of polarization. This relationship between magnetism and light was his
inspiration for his final scientific endeavors in 1862 in searching for any trace of
the influence of magnetic fields in the spectra of several substances. Unfortunately,
he failed to obtain any experimental evidence. Neither did Peter Guthrie Tait of
the University of Edinburgh who in 1875, influenced by the mechanical analogies
of electromagnetism of William Thomson (Lord Kelvin), had a similar intuition to
Faraday’s. Ten years later, the Belgian astronomer M. Fievez carried out laboratory
experiments in which he did find some indications of a magnetic influence on the
sodium spectral lines. He was not able to discriminate magnetic from temperature
effects, so he stopped his inquiries at that point.

Unacquainted with this work, Pieter Zeeman, associate professor at the Univer-
sity of Leyden, had the same intuition as Faraday and Tait because of his work on
the Kerr effect. His first experiments failed to find any observable effect, and he
would have not tried again had he not read by chance, in the Collected Works of
James Clerk Maxwell, of the final efforts of Faraday. Having had ideas similar
to Faraday’s encouraged him to take up the experiments with more care. His ex-
perimental results were soon forthcoming, and explanations for them came from
Hendrik Antoon Lorentz, also a professor at Leyden University. The widening
of spectral lines had to be accompanied by a distinct polarization in the wings of
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the lines. Zeeman and Lorentz shared the Nobel Prize for Physics in 1902. Yet
disagreements between experiment and theory were very quickly found, and the
Zeeman effect remained unexplained for some 30 years after its discovery. Hence,
it constituted an experimental milestone in the development of quantum mechanics.
Only after the electron theories of Wolfgang Ernst Pauli (1927; non-relativistic) and
Paul Adrien Maurice Dirac (1928; relativistic) could the empirical results be fully
understood.

In parallel with laboratory discoveries, astronomical spectroscopy received a
great impetus from the middle of the century. In 1866, Sir Joseph Norman Lockyer
observed the spectrum of a sunspot. Comparison with the spectrum of the nor-
mal solar photosphere revealed a conspicuous widening of the lines. This phe-
nomenon, interpreted nowadays as a result of the Zeeman effect brought about by
the sunspot’s magnetic field, was observed by many workers until the early 1900s.
Unfortunately, nobody realized the relevance of the phenomenon, even well after
Zeeman’s discovery had been brought to the notice of the astrophysical community.

Motivated by the new morphology of sunspots as seen in Hα photographs, in
1908 George Ellery Hale finally found a convincing explanation for the observed
sunspot spectrum: the presence of strong magnetic fields in sunspots. The spectral
lines appeared to be widened, split, and in the right state of polarization. This can
be thought of as one of the fundamental discoveries of solar physics in the twentieth
century. It triggered new and fertile fields of solar and stellar research, for which
spectroscopy and polarimetry must be combined in order to exploit to the full the
information embedded in the light from heavenly bodies.

1.4 Radiative transfer for polarized light

The specification of the radiation field through an atmosphere that scatters light
started as a physical problem in 1871 with the work of the English physicist
John William Strutt (Lord Rayleigh) on sky light. Independently of the already-
mentioned paper of Soleillet but a few years later, the fundamental equations were
formulated and solved by Subrahmanyan Chandrasekhar in his series of papers
published in The Astrophysical Journal. In the meantime, the works of Arthur
Schuster (1905) and Karl Schwarzschild (1906) deserve especial mention because
of their revival of the problem mainly within the astrophysical community. By the
middle of the twentieth century, however, physicists from other branches became
interested in radiative transfer since the same problems seemed to arise in, for in-
stance, the diffusion of neutrons. Most remarkably, the transfer was formulated
by Chandrasekhar for polarized radiation since the original problems had to do
with light polarized by scattering. Nevertheless, since the 1940s the most extended
use of the radiative transfer equation has been in relation to unpolarized problems:
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stellar atmospheres have often been assumed isotropic so that just one equation for
the total intensity of the light beam is needed.

The study of solar and stellar magnetic fields is an application for which the
problem of polarized energy transport is of singular importance. The wealth of in-
formation obtained after Hale’s discovery of sunspot magnetic fields made it neces-
sary to interpret the spectrum of polarized light observed in the Sun and other stars.
Since the mid-1950s, a full theory of polarized radiative transfer has been devel-
oped, mostly motivated by the problem of solar/stellar magnetic fields, but whose
applications go far beyond astrophysics. Since the theory is relatively young, it
would seem appropriate to mention a few landmarks in the literature. The theory
builds upon the pioneering work by Wasaburo Unno from Japan (1956) dealing
with the formulation – and solution in a simplified Milne–Eddington model – of a
radiative transfer equation in the presence of a magnetic field. The work was indeed
aimed at describing spectral line formation in the presence of magnetic fields in the
solar atmosphere. Only absorption processes were taken into account and the com-
pletion of such an equation, including dispersion effects (the so-called magneto-
optical effects in the astrophysical literature) was carried out by D. N. Rachkovsky
(1962a, 1962b, 1967) from the Ukraine – of course, the solution in that simpli-
fied model was also corrected. The formulation, however, was phenomenological
and somewhat heuristic and was not put on a firm, rigorous basis until the work
by Egidio Landi Degl’Innocenti and Maurizio Landi Degl’Innocenti (1972), who
derived the transfer equation for polarized light within the framework of quan-
tum electrodynamics. Later, three derivations of that equation from first principles
(basically Maxwell’s equations) of classical physics were published: one by John
Jefferies, Bruce W. Lites, and Andrew P. Skumanich (1989), another by Jan Olof
Stenflo (1991; see also 1994), and a third by Egidio Landi Degl’Innocenti (1992).
Many of the developments which follow in this text are based on these three works.
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A review of some basic concepts

Finalmente, quiero, Sancho, me digas lo que acerca desto ha llegado a tus oı́dos; y esto
me has de decir sin añadir al bien ni quitar al mal cosa alguna, . . .

—M. de Cervantes Saavedra, 1615.

‘Finally, Sancho, I want you to tell me what has reached your ears concerning this matter,
and you must do so without adorning the good or lessening the ill.’

This chapter is devoted to recalling a number of results of importance for devel-
opment in later chapters. Most of these concepts are assumed to be already known
to the reader, and those derivations that are missing will be found in textbooks on
optics and electromagnetism. The main aim here is to provide a summary of the
polarization properties of the simplest electromagnetic wave one can conceive: the
monochromatic, time-harmonic, plane wave.

The terms light and electromagnetic wave will be understood as synonymous
throughout the text. More specifically, we will be referring to the visible part of the
spectrum and its two nearest neighbors, the ultraviolet and the infrared. Many of the
topics discussed are also applicable to other wavelength regions. In particular, it is
worth noting that radio observations use most of the concepts we shall be develop-
ing here for the optical region, although they are not in principle necessary for that
wavelength range. The relevant difference between our spectral region and those
of radio waves on the one hand and X- and γ rays on the other lies in the means
of detection or measurement. These techniques are necessarily different owing to
the basically different characteristic frequencies of electromagnetic waves in the
three regimes. Radio waves have a sufficiently small frequency for the amplitude
and phase of the oscillating electric field to be measured directly. The oscillation
is so slow that it can be “followed” by antennas whose response is proportional to
the electric field. In the optical regime (including the infrared and the ultraviolet),

9
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the frequencies are so high that the electric oscillations cannot be followed by any
detector. The response of detectors is proportional to the electromagnetic energy
carried by the waves. Finally, in the most energetic domain, the interaction between
radiation and matter is often better characterized by the corpuscular rather than by
the undulatory properties of radiation. Treatment of radio, X-, and γ rays is beyond
the scope of this book.

2.1 Light as an electromagnetic wave

In regions free of currents and charges in a homogeneous isotropic medium,
Maxwell’s equations imply that the electric field vector, E, associated with the
luminous perturbation must verify the homogeneous wave equation

∇2E − εµ

c2
Ë = 0, (2.1)

where ε stands for the dielectric permittivity, µ for the magnetic permeability of
the medium, and c for the speed of light in vacuo. An analogous equation holds for
the magnetic field vector, H.

By isotropic one means a medium whose behavior under the influence of the
electromagnetic field is well characterized by material equations with scalar co-
efficients ε, µ, and σ (the conductivity). Hence, the material behavior at every
point is independent of the propagation direction of the field. If, besides, ∇(ln ε) =
∇(lnµ) = 0, i.e., if no directional variations of ε and µ exist, the medium is said
to be homogeneous.

The coefficient in Eq. (2.1) can be readily interpreted as the velocity of electro-
magnetic waves propagating through the medium:

v = c√
εµ

≡ c

n
, (2.2)

where the new quantity n is called the refractive index of the medium. By in-
terpreting c/

√
εµ as a propagation velocity, we are in fact neglecting (possible)

standing-wave solutions to Eq. (2.1). The isotropic medium is characterized by a
single refractive index and the electromagnetic waves propagate throughout with
a single velocity no matter what the direction.∗

The simplest solution of Eq. (2.1) is that of a plane wave for which each
Cartesian component of E (and H), at a given point, r, in space and at a time t ,
depends only on the magnitude u ≡ r · ŝ − vt of the vector u = uŝ:

E(r, ŝ, t) = E(r · ŝ − vt); H(r, ŝ, t) = H(r · ŝ − vt), (2.3)

∗ Although very simple and well known to the reader, this digression about homogeneity and isotropy of the
medium is in order. Many of the discussions concerning polarimetry and polarized radiative transfer are based
on anisotropies and inhomogeneities of the medium through which the light is traveling.
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Fig. 2.1. A plane wave depends only on u = r · ŝ − vt . Then, the electric field is constant
over planes perpendicular to the propagation direction at a given instant t .

where ŝ is a unit vector in the direction of propagation and the dot symbol indicates
the scalar product.

This wave can be shown (e.g., Born and Wolf, 1993) to verify that

E = −
√

µ

ε
ŝ ∧ H = −µ

n
ŝ ∧ H,

H = ε

n
ŝ ∧ E,

(2.4)

where the symbol ∧ represents the vector product. These equations clearly indicate
that H is known whenever we know E and vice versa. On the one hand, this result
allows us to neglect the equation for H homologous to Eq. (2.1). We can then study
the electromagnetic wave by simply considering solutions to the electric-field wave
equation (2.1). On the other hand, scalar multiplication of Eqs (2.4) by ŝ yields

E · ŝ = H · ŝ = 0; (2.5)

that is, electromagnetic waves are transversal, such that E and H always remain in
planes perpendicular to ŝ. Finally, Eqs (2.4) and (2.5) explain that E, H, and ŝ form
a right-handed orthogonal triad, and that

√
µH = √

εE, (2.6)

so that, when ε = µ = 1, as in vacuo, the electric and magnetic fields associated
with the luminous perturbation have the same magnitude.

An illustration of plane waves can be found in Fig. 2.1, where the reason for the
name “plane waves” is easily understood: at a given instant t , E (and H) is constant
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over planes given by r · ŝ = constant. These planes are called wavefronts. The di-
rection ŝ normal to the wavefronts is called the wavefront normal. In astrophysics,
−ŝ is called the line of sight. We shall restrict our discussion to plane waves since
these turn out to be a good approximation to more involved solutions (e.g., spheri-
cal waves) of Eq. (2.1) when the observer is far enough from the light source, as is
the case for most astrophysical applications.

2.2 The monochromatic, time-harmonic plane wave

Since complex exponentials are eigenfunctions of the derivative operator, it is nat-
ural to look for plane-wave solutions to Eq. (2.1) of the form

E j = a j ei(ku+δ j ), (2.7)

where the index j applies to the x , y, and z Cartesian components of vector E;
a j stands for the constant (real) amplitude of each component, δ j is a constant
phase factor to account for time lags between the components, k is the so-called
wave number and is a dimensional constant to make the exponential argument
dimensionless,

u = r · ŝ − vt ≡ 1

k
(k · r − ωt), (2.8)

where, by definition, ω = 2πν is the angular frequency, k ≡ k ŝ = (2π/λ)ŝ is the
so-called wave vector, λ and ν being the wavelength and frequency of the plane
wave. Hence, Eq. (2.7) can be recast in the form

E j = A j e−i(ωt−δ j ), (2.9)

where A j is the complex amplitude of the wave (A j = a j eik·r). Accounting for
Eq. (2.5), Eq. (2.9) gives explicitly:

Ex = Ax e−i(ωt−δx ),

Ey = Ay e−i(ωt−δy),

Ez = 0,
(2.10)

if ŝ = ẑ, i.e., if light propagates along the positive Z axis. Solutions (2.10) of the
wave equation (2.1) are called monochromatic (of a single color or frequency),
time-harmonic (sinusoidally periodic with time), plane waves. We shall hereafter
refer to them as just monochromatic waves.

Our choice of a complex representation for the electric and magnetic fields as-
sociated with radiation is convenient for the calculus. It is important to remark,
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however, that the relevant physical quantities are the real parts of these complex
fields: measurable quantities must be real, and complex quantities are just a useful
mathematical representation and cannot be measured. The usefulness of complex
notation is somehow counterbalanced by the added difficulty that arises because
of sign conventions. Equation (2.7) could have been written with a minus sign in
the exponential argument as well, since the real part of E j would be the same. In
that case, the new sign convention should be preserved whenever necessary in all
ensuing transformations in order to get the right results: it is the price to be paid
for using the otherwise convenient complex representation. As gently pointed out
by Rees (1987) and others, sign conventions are very relevant in polarimetry and
should always be borne in mind.

2.3 The polarization tensor

One of the direct consequences of Maxwell’s equations is the identification of the
energy density of the electromagnetic field and its energy flux across a unit surface
perpendicular to the propagation direction (e.g., Born and Wolf, 1993). These two
quantities have their respective counterparts in the astrophysical context in terms
of specific intensity and flux (see Mihalas, 1978). The volume energy density is
given by

w ≡ 1

16π
(εE · E∗ + µH · H∗), (2.11)

or, according to Eq. (2.6),

w = ε

8π
E E∗. (2.12)

The energy flux density is given by the Poynting vector,

S ≡ c

8π
E ∧ H∗ = vε

8π
E E∗ŝ, (2.13)

where the asterisk stands for the complex conjugate. These definitions of the en-
ergy density and of the Poynting vector are convenient for the average process
carried out in practical measurements (Sections 3.3 and 3.5) and correspond to the
quantities averaged over a period of the wave.

From an observational viewpoint, one is mainly interested in these energy quan-
tities, that is, in those quantities concerning the electromagnetic wave that are mea-
surable with available devices. As noted in the introduction to this chapter, the
electric field associated with visible light cannot be measured. Detectors are sensi-
tive to electromagnetic energy. Therefore, Eqs. (2.12) and (2.13) lead us directly to
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consider the so-called polarization tensor or coherency matrix of a monochromatic
wave:

C ≡
(

Ex E∗
x Ex E∗

y

Ey E∗
x Ey E∗

y

)
. (2.14)

As we shall see, the coherency matrix characterizes both the energy content and
the vectorial properties of the electromagnetic wave.

With the help of Eq. (2.9) we can identify the coherency matrix elements and
rewrite C as

C =
(

a2
x axay eiδ

axay e−iδ a2
y

)
, (2.15)

where

δ ≡ δx − δy (2.16)

is the constant phase difference between the x and y components of vector E. Note
that only the real amplitudes appear in Eq. (2.15): the complex spatial exponentials
cancel out; hence, the polarization tensor (and the energy flow) depends neither on
time nor on space in the absence of sources and sinks. The diagonal elements are
squares of amplitudes, i.e., intensities (or energies) except for a constant factor.
They are the terms needed to evaluate both w and S. If one considers the elec-
tromagnetic wave as the superposition of two waves, one with the electric vector
oscillating along the X axis and the other with the electric vector oscillating along
the Y axis, a2

x is proportional to the intensity of the first wave and a2
y is proportional

to the intensity of the second wave. The sum of these diagonal terms is then pro-
portional to the total intensity of the wave. Thus, they are directly measurable. The
non-diagonal terms are complex conjugates of each other and also have the same
dimensions as energy. They describe the phase relationship or correlation between
the two independent Cartesian-component waves. They are not measurable because
they are complex quantities but we are able to measure real linear combinations of
them (Sections 2.4, 3.3, and 3.5).

In summary, the monochromatic wave is such that its polarization tensor has a
trace

Tr(C) = a2
x + a2

y ≥ 0, (2.17)

which is proportional to the total intensity of the wave, and a zero determinant:

det(C) = 0. (2.18)

Inequality (2.17) holds for every plane wave, monochromatic or otherwise
(Section 3.3). The physical reason is very simple: the total intensity cannot be neg-
ative. This is not the case for condition (2.18) however. Polychromatic light may
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Fixed plane; time varies

Left-handed (sin δ < 0)

Right-handed (sin δ > 0)

Fig. 2.2. The real part of the electric field vector rotates clockwise as seen by the observer
in fixed planes as time varies if light is right-handed elliptically polarized. If the time is
fixed then ER describes the traces of a right-handed screw without rotation. When light is
left-handed elliptically polarized, the opposite motions can be observed.

or may not verify it. Light with det(C) = 0 is said to be totally (or completely)
polarized. Therefore, our paradigmatic, monochromatic wave is totally polarized.
Total polarization means that the associated electric field vector undergoes a given
motion with time in every fixed plane perpendicular to the propagation direction.
Such a motion is of an ellipse given by

E2
x,R

a2
x

+ E2
y,R

a2
y

− 2
Ex,R

ax

Ey,R

ay
cos δ = sin2 δ, (2.19)

as can easily be deduced from Eqs (2.10) and (2.16). In Eq. (2.19), Ex,R and Ey,R

stand for the real parts of Ex and Ey , respectively. Figure 2.2 illustrates the el-
liptical motion with time of the real part of the electric field vector in any fixed
plane perpendicular to the line of sight. There are two possible senses of rotation
of the elliptically polarized field depending on the sign of sin δ. When sin δ > 0,
ER undergoes a clockwise rotation as seen by the observer. The light is then said
to be right-handed elliptically polarized. If sin δ < 0, the rotation is seen as
counter-clockwise by the observer. The light is then said to be left-handed ellip-
tically polarized. Should we instead have chosen a fixed instant of time, the tip
of ER would have described the traces of a right-handed screw (sin δ > 0) or
a left-handed screw (sin δ < 0), without rotation along the positive Z axis. All
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π < δ < 3π/2              

ax = ay ; δ = π/2δ = 0

δ = π

0 < δ < π /2                                        δ = π/2

δ = 3π/2

π/2 < δ < π

3π/2 < δ < 2π ax = ay ; δ = 3π/2

Fig. 2.3. Possible states for totally polarized radiation. The monochromatic wave is ellip-
tically polarized in general (right-handed states are in the upper row and left-handed states
are in the lower row). When one of the Cartesian components is zero or when both have
different amplitudes but a phase difference equal to 0 or π , the ellipse becomes a straight
line. When the amplitudes of the Cartesian components are equal and δ = π/2 or 3π/2,
the ellipse becomes a circle.

possible states of polarization of a monochromatic wave are sketched in Fig. 2.3,
where one can clearly see that when either δ = 0 or δ = π the ellipse becomes
a straight line. The monochromatic wave is then said to be linearly polarized. In
the particular case when ax = ay and δ = π/2 or 3π/2 the ellipse degenerates
into a circle and the light is said to be circularly polarized. Note the sign conven-
tion we are adopting. One can never over-emphasize the importance of keeping
in mind the arbitrary conventions. Results are of course independent of conven-
tions but one may easily be caught out in intermediate calculations by simple sign
mistakes.

2.4 The Stokes parameters of a monochromatic, time-harmonic plane wave

As far as polarization is concerned, the characterization of a monochromatic wave
depends only upon three independent parameters; namely, the two real amplitudes
of the x and y components and the phase difference between them. This is the
physical reason for the existence of the binding condition (2.18) among the four
matrix elements of the polarization tensor: four elements minus one condition give
three degrees of freedom.

Our interest in the coherency matrix stems from its relation to the energy flow.
The non-diagonal elements of C, however, are complex and are therefore not mea-
surable: we only know how to measure real quantities. Therefore, rather than us-
ing these four matrix elements of C, it is customary to consider four real linear
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combinations of them: the so-called Stokes parameters which are given by

I ≡ κ(C11 + C22) = κ(a2
x + a2

y),

Q ≡ κ(C11 − C22) = κ(a2
x − a2

y),

U ≡ κ(C12 + C21) = 2κaxay cos δ,

V ≡ iκ(C21 − C12) = 2κaxay sin δ,

(2.20)

where κ is a dimensional constant that translates the Stokes parameters into in-
tensity units.† Stokes V can also be found in other texts with a minus sign (e.g.,
Landi Degl’Innocenti, 1992). Such a definition obeys another choice in the arbi-
trary convention used to define the coherency matrix. These authors define C as
the complex conjugate of ours. The actual value of V is, however, invariant if the
signs are handled with care because V is always real.

Like Ci j elements, the four Stokes parameters are not independent but are subject
to two conditions. In order to find these conditions, it is convenient to bear in mind
that, equivalently to Eq. (2.20), one can write

C = 1

2κ

(
I + Q U + iV

U − iV I − Q

)
. (2.21)

From this equation it is easy to see that the binding condition (2.18) becomes

I 2 − Q2 − U 2 − V 2 = 0. (2.22)

Since Stokes I represents the total intensity of the beam (I ∝ Tr[C]), physical
meaning [inequality (2.17)] demands that

I ≥ 0. (2.23)

Therefore, the Stokes parameters of the monochromatic wave are such that the first
must always be positive and the sum of the squares of the last three parameters
equals the square of the first.

Disregarding the case of I = 0 (no light), Eq. (2.22) can always be put in the
form

Q2

I 2
+ U 2

I 2
+ V 2

I 2
= 1, (2.24)

which is the equation of the surface of a sphere of radius unity, the so-called

† I do not enter into details of measurability because, in fact, monochromatic waves cannot exist except as ideal-
ized mathematical entities. Note that they should be infinite both in time and space to be purely monochromatic
whereas only finite time or space intervals are available in measurements. I have introduced the Stokes pa-
rameters of a monochromatic light beam both by tradition and because of its conceptual ease. Measurability
of the Stokes parameters of polychromatic light will be discussed in Sections 3.3 and 3.5.
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V/I

U/I

Q/I

Fig. 2.4. The Poincaré sphere has radius unity. Each point on its surface represents a totally
polarized state of light.

Poincaré sphere, IP (see Fig. 2.4). Every point on the surface of such a sphere rep-
resents one of the possible polarization states of a monochromatic beam of light.
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3

The polarization properties
of quasi-monochromatic light

If light is man’s most useful tool, polarized light is the quintessence of utility.
—W. A. Shurcliff, 1962.

So far, the polarization properties of the simplest conceivable electromagnetic
radiation have been described. However, building a polarization theory that is useful
in the real world necessarily requires the consideration of light whose spectrum
contains a continuous distribution of monochromatic plane waves within a finite
width of frequencies. Heisenberg’s uncertainty principle implies infinite time inter-
vals for detecting purely monochromatic light (in other words, we can simply say
that monochromatic light does not exist in reality). In this section we shall see that
the concept of polarization is also applicable to polychromatic light. As a matter
of fact, polychromatic light may share the properties of totally polarized radiation
and hence be indistinguishable from monochromatic light in so far as polarimetric
measurements are concerned. The coherency matrix and the Stokes parameters can
also be defined for a polychromatic light beam, although the binding conditions
(2.18) for C and (2.22) for I , Q, U , and V will be slightly modified and the new
concepts of partial polarization and degree of polarization will naturally come into
play.

3.1 Polychromatic light as a statistical superposition
of monochromatic light

Under the hypotheses of linearity, stationarity, and continuity, one can assume
any polychromatic light beam to be the superposition of monochromatic, time-
harmonic plane waves of different frequencies within an interval of width �ν

around a central frequency ν0. Such a superposition can be represented mathe-
matically by writing each of the electric field Cartesian components as a Fourier

19
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0 ν0

ν00

�ν

|Ax (ν) |

A

Fig. 3.1. Amplitude spectrum of a monochromatic wave (top row). Amplitude spectrum
of a polychromatic wave (bottom row).

integral; for instance,

Ex(t) =
∫ ∞

−∞
Ax(ν) e−2π iνt dν. (3.1)

With our previous choice of complex exponentials with a minus sign in the argu-
ment for denoting harmonic functions, Eq. (3.1) can be interpreted to mean the
x component of the electric field being the inverse Fourier transform of Ax(ν); in
other words, Ax(ν) is the spectrum or Fourier transform of the x component of the
electric field. According to Fourier theory, Ex(t) and Ax(ν) provide the same infor-
mation: they are different representations of the very same function; the function
in the time domain tells us about variations with time of the electric field, while the
spectrum tells us the frequency content of the field. As illustrated in Fig. 3.1, when
passing from a monochromatic beam of frequency ν0 to a polychromatic beam of
central frequency ν0, the spectrum of light changes from a Dirac delta distribution
to a distribution with non-zero values in an interval of width �ν, which is usually
much smaller than ν0. Although Fig. 3.1 represents only the amplitude spectrum,
the phase spectrum should also be considered because Ax(ν) is generally com-
plex. A similar finite-bandwidth spectrum can be found if one observes an (ideal)
monochromatic wave during a (necessarily) finite time window. The convolution
theorem ensures that the observed spectrum is the convolution of the spectrum of
the monochromatic wave (a Dirac delta) and that of the window (a sinc function
if the window is a top-hat function).

The typical time-scales of such a polychromatic electromagnetic wave are the
mean period, τ0 = 1/ν0, and the coherence time, τc = 1/�ν. In practice, these
scales are much smaller than the (finite) time interval for measurements, τm. For
example, a polychromatic beam of width 10 nm around 500 nm has a mean period
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τ0 = 1.6 × 10−15 s and a coherence time τc = 8.3 × 10−14 s. It is then clear that
even the fastest electronic detectors with τm in the order of micro- or nanoseconds
are unable to follow the rapidly varying electric field fluctuations. Measurements,
then, are averages of the type

1

τm

∫ τm
2

− τm
2

Ex(t)E∗
x (t)dt. (3.2)

Since τm � τ0 and τc, it is convenient to let τm approach infinity and then
representing measurements by

〈Ex E∗
x 〉 ≡ lim

τm→∞
1

τm

∫ ∞

−∞
Ex,τm(t)E∗

x,τm
(t)dt, (3.3)

where, by definition,

Ex,τm(t) ≡ Ex(t)�τm(t), (3.4)

with

�τm(t) =
{

1 −(τm/2) ≤ t ≤ (τm/2),
0 otherwise.

(3.5)

After assuming the local square integrability of Ex(t) and light as a statistically
ergodic process (see, for example, Born and Wolf, 1993), it can be shown that a
finite, non-zero, limit exists for the right-hand side of Eq. (3.3). Similar limits can
also be found for 〈Ey E∗

y〉, 〈Ex E∗
y〉, and 〈Ey E∗

x 〉.

3.2 The quasi-monochromatic plane wave

The x (and y) component of the electric field of a polychromatic beam streaming
along the Z axis can always be put in the form

Ex(t) = [E x(t) eiφx (t)
]

e−2π iν0t , (3.6)

that is, as a monochromatic plane wave of frequency equal to its mean frequency
modulated by a (complex) amplitude that varies with time. In Eq. (3.6), obviously,

Ex(t) = √
Ex(t)E∗

x (t) = |Ex(t)|,

φx(t) = 2πν0t + tan−1

{
Im [Ex(t)]

Re [Ex(t)]

}
.

(3.7)

Equations (3.1) and (3.6) imply that

Ex(t) e−i[2πν0t−φx (t)] =
∫ ∞

−∞
Ax(ν) e−2π iνt dν, (3.8)
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and, using the variable change µ ≡ ν − ν0,

Ex(t) eiφx (t) =
∫ ∞

−∞
Ax(µ + ν0) e−2π iµt dµ, (3.9)

which gives us the spectral content of the time-dependent amplitude and phase of
the plane wave. Since Ax(µ + ν0) is the Fourier transform of the function on the
left-hand side, the wider Ax is, the faster the variation of the modulating envelope.

If �ν/ν0 � 1 then Ax(µ + ν0) differs from zero only in the neighborhood of
µ = 0. In other words, the amplitude and phase of the polychromatic wave have
only low frequencies. Hence, the left-hand side of Eq. (3.9) must be interpreted as
a slowly varying function of t . In such a case, the polychromatic plane wave is said
to be quasi-monochromatic.

3.3 The polarization tensor and the Stokes parameters
of a quasi-monochromatic plane wave

From a formal point of view, Eq. (3.6) allows us to consider a quasi-monochrom-
atic plane wave as a purely monochromatic plane wave with the only difference
that both amplitude and phase are (slowly) time-dependent.

The energy quantities of the monochromatic wave, enclosed in the polarization
tensor, now become time averages like those of Eq. (3.3). Hence, one can define
the coherency matrix of a polychromatic (in particular, quasi-monochromatic) light
beam as

C ≡
(〈Ex(t)E∗

x (t)〉 〈Ex(t)E∗
y(t)〉

〈Ey(t)E∗
x (t)〉 〈Ey(t)E∗

y(t)〉
)
, (3.10)

and, using Eq. (3.6),

C =
( 〈E2

x (t)〉 〈Ex(t)Ey(t) eiφ(t)〉
〈Ex(t)Ey(t) e−iφ(t)〉 〈E2

y (t)〉
)
, (3.11)

where φ(t) ≡ φx(t) − φy(t).
As in the monochromatic case, the elements of the coherency matrix (and hence

the energy content of the electromagnetic field) are independent of both time (after
the assumption of stationarity) and space in the absence of sources and sinks. This
invariance is equivalent to that noted in classical textbooks on stellar atmospheres
and radiative transfer in astrophysics for the specific intensity. The trace of the
polarization tensor is still the total intensity of the light beam:

Tr(C) = 〈E2
x (t)

〉 + 〈E2
y (t)

〉 ≥ 0. (3.12)
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However, the determinant of the polarization tensor is not necessarily zero. In fact,
Schwarz’s inequality requires that

|Ci j | ≤ √
Cii C j j , i �= j, (3.13)

or, in other terms,

det(C) = C11C22 − C12C21 ≥ 0. (3.14)

The non-diagonal terms of the coherency matrix are generally complex, but they
are conjugates of each other (the polarization tensor is a Hermitian matrix). They
provide a measure of the correlation between the x and y components of the electric
field vector:† the smaller the determinant, the closer the beam is to being coherent
(i.e., monochromatic) radiation.

The Stokes parameters of the quasi-monochromatic plane wave turn out to be:

I = κ
(〈E2

x

〉 + 〈E2
y

〉)
,

Q = κ
(〈E2

x

〉 − 〈E2
y

〉)
,

U = 2κ〈ExEy cosφ(t)〉,

V = 2κ〈ExEy sinφ(t)〉,

(3.15)

where we have used the same combinations of the coherency matrix elements as
for Eqs (2.20). Note that all four Stokes parameters are real and have dimensions
of energy. They are thus measurable. The actual value of κ is irrelevant in practice
since only Q/I , U/I , and V/I are sought in most cases.

Equation (3.15) can be similarly derived from a more appealingly symmetric
definition of the Stokes parameters:

I = κ Tr (Cσσ 0),

Q = κ Tr (Cσσ 1),

U = κ Tr (Cσσ 2),

V = κ Tr (Cσσ 3),

(3.16)

† The correlation between the square integrable functions f (t) and g(t) is defined as
∫∞
−∞ f (t + t ′)g∗(t ′)dt ′

so that it is in fact a function of the displacement, t . The coherency matrix elements are then correlations for
zero displacement.
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where σσ i (i = 0, 1, 2, 3) are the 2×2 identity matrix and the three Pauli matrices:‡

σσ 0 =
(

1 0
0 1

)
, σσ 1 =

(
1 0
0 −1

)
,

σσσ 2 =
(

0 1
1 0

)
, σσ 3 =

(
0 i

−i 0

)
.

(3.17)

The consistency of Eq. (3.16) can easily be checked from Eq. (2.21).
Therefore, I , Q, U , and V are indeed the coefficients of an expansion of the

coherency matrix in terms of the σi matrices:

C = 1

2κ
(Iσ0 + Qσ1 + Uσ2 + Vσ3). (3.18)

3.4 Degree of polarization and the Poincaré sphere

From the binding condition (3.14) on C and the definition of the Stokes parameters
(3.15) or (3.16), it is easy to see that

I 2 − Q2 − U 2 − V 2 ≥ 0, (3.19)

and from the definite non-negativeness of Tr(C) [Eq. (3.12)],

I ≥ 0. (3.20)

Conditions (3.19) and (3.20) must be verified by any set of physically meaningful
Stokes parameters; that is, by I , Q, U , and V values of any quasi-monochromatic
plane wave. The interpretation of inequality (3.20) is simple and is indeed the same
as for the monochromatic case: negative intensities do not exist; the particular case
when I = 0 corresponds to the absence of light. Condition (3.19), however, differs
from Eq. (2.22) for monochromatic light: a quasi-monochromatic plane wave may
or may not be totally polarized. From Eq. (3.11), it is easy to see that equality be-
tween the square of I and the sum of the squares of Q, U , and V holds if, and only
if, Ey(t)/Ex(t) and φ(t) are constant. In such a case, the quasi-monochromatic
light is said to be totally polarized and cannot be distinguished from monochro-
matic light as far as polarization is concerned. When Q = U = V = 0, the light
is said to be natural or completely unpolarized. Otherwise, the light is said to be
partially polarized. We shall come to understand the meaning of this term later in
this section.

‡ The “standard” Pauli matrices are σs,1 = σ2, σs,2 = −σ3, and σs,3 = σ1. Again, sign conventions and the
(also arbitrary) ordering of the Stokes parameters make us choose the matrices of Eq. (3.17).
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V/I

U/I

Q/I

Fig. 3.2. Quasi-monochromatic light is partially polarized in general. Its polarization vec-
tor lies within the Poincaré sphere. The center of the sphere corresponds to natural light.
The surface of the sphere corresponds to totally polarized light.

Given a set of four Stokes parameters, one can define a polarization vector,

p ≡
(

Q

I
,

U

I
,

V

I

)T

, (3.21)

where the index “T” denotes the transposition operation. Thus, every beam of light
can be characterized by its intensity and its polarization vector.

According to inequality (3.19), p belongs to the Poincaré sphere (see Fig. 3.2)
since

0 ≤ p =
√

Q2 + U 2 + V 2

I
≤ 1 �⇒ p ∈ IP, (3.22)

disregarding the case of I = 0. The magnitude, p, of the polarization vector is
called the degree of polarization of the quasi-monochromatic beam.

If p = 0, then Q = U = V = 0. This case corresponds to natural light; it is
geometrically located at the center of the Poincaré sphere. The physical reasons
for having Q, U , and V equal to zero are twofold. First, natural light has the same
intensity in every direction perpendicular to the direction of propagation. Second,
it is not altered by any previous retardation (phase addition) of any of the Cartesian
components of the electric field vector. Thus, unpolarized light presents no pref-
erential motion of ER on a plane perpendicular to the direction of propagation; in
other words, all possible motions of ER have the same probability of occurring.
If p = 1, then I 2 = Q2 + U 2 + V 2. This case corresponds to totally polarized
light. Its polarization vector ends on the surface of the Poincaré sphere and its elec-
tric vector can be thought of as undergoing an elliptic motion in exactly the same
way as purely monochromatic light. The internal points in the sphere represent all
possible states of partially polarized light.
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A very important property of partially polarized light is that it can be decomposed
into completely polarized and natural light. To verify this property, let us first
demonstrate that the Stokes parameters of several independent (incoherent) light
beams can be summed.† Consider n independent light beams whose electric field
vectors have components Ex,k and Ey,k , where k = 1, 2, . . . , n. By “independent”
we mean that no correlation exists between the components of different beams. The
electric field of the resulting beam has components

Ex(t) =
n∑

k=1

Ex,k(t) (3.23)

and

Ey(t) =
n∑

k=1

Ey,k(t). (3.24)

The coherency matrix of the ensemble field is then given by

Ci j = 〈Ei (t)E∗
j (t)〉 =

n∑
k=1

n∑
l=1

〈Ei,k(t)E∗
j,l(t)〉

=
n∑

k=1

〈Ei,k(t)E∗
j,k(t)〉 +

∑
k �=l

〈Ei,k(t)E∗
j,l(t)〉.

(3.25)

Since the last term of Eq. (3.25) must be zero by hypothesis (no correlation may
exist between incoherent light beams),‡ it turns out that

Ci j =
n∑

k=1

〈Ei,k(t)E∗
j,k(t)〉 =

n∑
k=1

Ci j,k; (3.26)

i.e., the coherency matrix elements of the sum of independent beams is the sum
of the coherency matrix elements of the individual beams. Since the Stokes pa-
rameters are linear combinations of Ci j , this property readily holds for I , Q, U ,
and V .

It is important to take note that Eq. (3.26) is valid only for the incoherent super-
position of polarized light. The Stokes formalism is unable to deal with coherent
superposition of completely polarized light because of the quadratic nature of I ,
Q, U , and V . Coherent superposition of totally polarized light such as occurs in
interference or diffraction phenomena, requires the addition of amplitudes of the
electric field. Such phenomena are studied within the Jones formalism, which in
turn is unable to describe partially polarized states. Virtually all the problems dis-
cussed in this book are more suitably described within the Stokes formalism, and

† This and the remaining results of this section were found as early as 1852 by G. G. Stokes.
‡ Remember the definition of correlation in the first footnote in this chapter (page 23).
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Table 3.1. Stokes vectors for some
completely polarized states. Angles
are referred to the positive X axis

counter-clockwise

Polarization state Stokes vector

Natural (1, 0, 0, 0)T

Linear at 0◦ (1, 1, 0, 0)T

Linear at 90◦ (1,−1, 0, 0)T

Linear at 45◦ (1, 0, 1, 0)T

Linear at 135◦ (1, 0,−1, 0)T

Right-handed circular (1, 0, 0, 1)T

Left-handed circular (1, 0, 0,−1)T

the Jones formalism is therefore ignored here. The interested reader is referred to
Shurcliff (1962) for the original bibliography on the Jones calculus.

It is customary (and useful) to group all four Stokes parameters in a four-vector

I ≡ (I, Q,U, V )T, (3.27)

the so-called Stokes vector. Examples of such Stokes vectors for particular cases
of totally polarized states can be found in Table 3.1, where intensities have been
normalized to unity. The meaning of the labels in the first column will be made
clear later (Section 3.5).

The property of addition for the Stokes parameters of independent light beams
is given by

I =
n∑

k=1

Ik, (3.28)

where Ik corresponds to the Stokes vector of the kth independent component. Using
this property, one easily gets


I
Q
U
V


 =




√
Q2 + U 2 + V 2

Q
U
V


 +




I −
√

Q2 + U 2 + V 2

0
0
0


 . (3.29)

Therefore, any quasi-monochromatic light beam can be considered as the (incoher-
ent) sum of a completely polarized beam [the first term on the right-hand side of
Eq. (3.29)] and a completely unpolarized beam [the second term on the right-hand
side of Eq. (3.29)]:

I = Ipol + Inat. (3.30)
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Hence, the quasi-monochromatic light is always partially polarized. The two ex-
treme cases of totally polarized or unpolarized light correspond to those for which
one of the two terms of Eq. (3.29) is zero. Equation (3.30) includes

I = Ipol + Inat, (3.31)

which implies that

p = Ipol

I
; (3.32)

that is, the degree of polarization is the ratio between the intensity of the completely
polarized component and the total intensity of the beam. This is the reason for the
name of the magnitude of the polarization vector, p.

If intensity is thought of as a scaling factor, the polarization state of any light
beam is completely described by the polarization vector, p. Reminiscent of this
geometrical representation, some polarization terms are borrowed from geometry.
Among these, it is convenient to introduce here the concept of orthogonally polar-
ized states. Contrary to what one might expect, two orthogonal states have their po-
larization vectors not orthogonal but anti-parallel: p and −p are orthogonal states.
The reason for this paradox is not unexpected, however. The qualifier “orthogonal”
refers to the way polarization is measured. In particular, any two orthogonal states
are detected by a device whose characteristics differ in just one direction, which,
for one of the states, is perpendicular to that for the other state (see Section 3.5 for
details).

The addition property (3.28) allows us to consider natural light as the (incoher-
ent) sum of any two orthogonally polarized states, each having half the intensity of
the original beam:




I
0
0
0


 = 1

2




I
Q
U
V


 + 1

2




I
−Q
−U
−V


 . (3.33)

For instance, natural light can be thought of either as being the sum of two linearly
polarized lights at 0◦ and 90◦,




I
0
0
0


 = 1

2




I
I
0
0


 + 1

2




I
−I

0
0


 , (3.34)
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or at 45◦ and 135◦, 


I
0
0
0


 = 1

2




I
0
I
0


 + 1

2




I
0

−I
0


 , (3.35)

or of two circularly (right-handed and left-handed) polarized components,


I
0
0
0


 = 1

2




I
0
0
I


 + 1

2




I
0
0

−I


 . (3.36)

The decomposition of both partially polarized [Eq. (3.29)] and natural light
[Eq. (3.33)] thus enables us in the end to consider every polarization state as the
sum of totally polarized states and is very helpful in understanding the measure-
ment procedures of the Stokes parameters.

Another interesting consequence of the addition property is that the incoherent
sum of a totally polarized beam plus a partially polarized beam is always partially
polarized. Let I1 be the Stokes vector of the totally polarized beam, such that I 2

1 =
Q2

1 + U 2
1 + V 2

1 , and I2 be the Stokes vector of the partially polarized beam, such
that I 2

2 > Q2
2 + U 2

2 + V 2
2 . The resulting beam has a Stokes vector, I3, such that

Q2
3 + U 2

3 + V 2
3 = (Q1 + Q2)

2 + (U1 + U2)
2 + (V1 + V2)

2

and, by the triangular inequality, the right-hand side of the above equation is less

than
(√

Q2
1 + U 2

1 + V 2
1 +

√
Q2

2 + U 2
2 + V 2

2

)2
. Therefore, we finally obtain

Q2
3 + U 2

3 + V 2
3 < (I1 + I2)

2 = I 2
3 . (3.37)

3.5 Measuring the polarization state of
quasi-monochromatic light

To gain an insight into the physical meaning of the Stokes parameters it is neces-
sary to grasp how they can be measured. If polarization means a definite motion of
the electric field vector, one should account for directions of motion and phase dif-
ferences between the two Cartesian components of the field. This is accomplished
by means of two specific measuring devices: the linear analyzer and the linear
retarder.

An optical system is said to be a linear analyzer if it presents maximum trans-
mission for the component Eθ of the electric field in a direction forming an angle θ

with the positive X axis and completely absorbs (or reflects) the component Eθ+π/2
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Fig. 3.3. Sketch of linear analyzer–polarizer behavior. Input light has two Cartesian com-
ponents in general. Only the projections of these two components over the optical axis (at
an angle θ to the X axis) are transmitted. The resulting beam from the linear analyzer–
polarizer is completely linearly polarized along the direction of the optical axis.

of the electric field in the orthogonal direction (see Fig. 3.3). The direction of
angle θ is called the optical axis of the linear analyzer. In other words, a linear
analyzer completely transmits any light beam linearly polarized along its optical
axis and completely extinguishes any light beam perpendicularly linearly polar-
ized to its optical axis. Most texts use the term “linear polarizer” for describing this
device. There is no possible confusion because both systems are the same physical
device. The two terms conform to the different roles such a device may play in po-
larization optics: a linear polarizer is an optical system such that, after interaction
with it, light becomes completely linearly polarized. At the exit of such a device,
the new x and y components of the electric field corresponding to an arbitrary
input are

E ′
x = Ex cos θ; E ′

y = Ey sin θ. (3.38)

An optical system is said to be a linear retarder if it imparts a retardance (a
phase lag) δ to one of the orthogonal components of E with respect to the other.
The electric field of the retarded component is colinear with the so-called slow axis
and the other is parallel to the fast axis of the retarder (see Fig. 3.4). If X is the fast
axis, the x and y components of the outgoing electric field are

E ′
x = Ex ; E ′

y = Ey eiδ. (3.39)
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Fig. 3.4. A linear retarder shifts the phase of that Cartesian component of the input which
is linearly polarized along its slow axis. In this example, X is the fast axis.

Imagine a quasi-monochromatic plane wave to be transmitted through a linear
retarder and then through a linear analyzer like those described above. Let us study
the (measurable) intensity of the transmitted light beam that will obviously depend
on both θ and δ.

According to Eqs (3.39) and (3.38), at the exit of the analyzer the light is com-
pletely linearly polarized at an angle θ , the amplitude of the electric vector being
given by

Eθ (t; δ) = Ex cos θ + Ey sin θ eiδ. (3.40)

The intensity of the output beam is

Imeas(θ, δ) = 〈Eθ (t; δ)E∗
θ (t; δ)〉, (3.41)

or, written in full (but excluding functional dependences),

Imeas(θ, δ) = 〈Ex E∗
x cos2 θ + Ey E∗

y sin2 θ

+ 1

2
Ex E∗

y sin 2θ e−iδ + 1

2
E∗

x Ey sin 2θ eiδ〉. (3.42)
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From the definition of the Stokes parameters (3.15), and assuming that κ = 1, we
easily obtain:

〈Ex E∗
x 〉 = 1/2(I + Q),

〈Ey E∗
y〉 = 1/2(I − Q),

〈Ex E∗
y〉 = 1/2(U + iV ),

〈E∗
x Ey〉 = 1/2(U − iV ).

(3.43)

Hence, Eq. (3.42) can be recast in the useful form

Imeas(θ, δ) = 1

2
(I + Q cos 2θ + U cos δ sin 2θ + V sin δ sin 2θ). (3.44)

We have found that the measured intensity of the output beam is a linear combi-
nation of the four Stokes parameters of the input beam. Hence, by varying θ and δ

one can easily determine I , Q, U , and V . Specifically,

I = Imeas(0, 0) + Imeas(π/2, 0),

Q = Imeas(0, 0) − Imeas(π/2, 0),

U = Imeas(π/4, 0) − Imeas(3π/4, 0),

V = Imeas(π/4, π/2) − Imeas(3π/4, π/2).

(3.45)

Note that Stokes Q, U , and V result from differences in two intensity measure-
ments for which the optical axis of the analyzer has been rotated by π/2. For
example, that light beam for which only Imeas(0, 0) is different from zero is in a
polarization state orthogonal to the other beam, for which only Imeas(π/2, 0) is dif-
ferent from zero. As commented on in the previous section, the two orthogonal
states have anti-parallel polarization vectors.

Let us digress a little on the physical meaning of Eqs (3.45). Let us consider
the most general input, a partially polarized beam, and explore what is going on
after the measurements described in Eqs (3.45). According to Eq. (3.30), the in-
put beam is always the sum of a natural beam plus a totally polarized beam. Now,
the natural component can be decomposed into two orthogonally polarized beams
[Eq. (3.33)], one of which will be completely transmitted and the other completely
absorbed or reflected. Fifty percent of the intensity of the natural component, then,
is contributed to every measurement. Since the equations for Q, U , and V are
differences, such a natural component cancels out for all three parameters and con-
tributes only to Stokes I – the total intensity of the input beam. Hence, polarization
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information is provided by Q, U , and V . As will be shown in Section 4.6.5, the
compound device (linear retarder plus linear analyzer) is indeed an analyzer which
completely transmits one state of polarization (not necessarily linear) and com-
pletely extinguishes the orthogonal state.† According to this interpretation, if we
denote the state of the analyzer by (θ, δ), we can identify (0, 0) as the analyzer that
completely transmits the linearly polarized component along the X axis; (π/2, 0)
as the analyzer that completely transmits the linearly polarized component along
the Y axis; (π/4, 0) as the analyzer that completely transmits the linearly polarized
component in the 45◦ direction; (3π/4, 0) as the analyzer that completely trans-
mits the linearly polarized component in the 135◦ direction; (π/4, π/2) as the an-
alyzer that completely transmits the right-handed circularly polarized component;
and, finally, (3π/4, π/2) as the analyzer that completely transmits the left-handed
circularly polarized component of the incoming beam of radiation. Thus, the in-
terpretation of the Stokes parameters follows naturally: I is the total intensity; Q
is the difference between the intensities of linear components at 0◦ and 90◦; U is
the difference between the intensities of linear components at 45◦ and 135◦; and
V is the difference between the intensities of the right-handed and left-handed cir-
cularly polarized components of the incoming quasi-monochromatic plane wave
(see Table 3.1).

3.6 A further perspective on polarization properties

So far we have been dealing with a Cartesian description of the electromagnetic
field that has led to a specific definition of the Stokes parameters but other descrip-
tions are possible. Within the preceding framework, the interpretation of Stokes
Q as the difference between the intensities of two linearly polarized components
along the X and Y axes followed naturally from definition (3.15) itself. Likewise, a
counter-clockwise rotation of 45◦ of the axes would have led to a similar interpre-
tation for Stokes U . The interpretation of Stokes V , however, needed the consider-
ations concerning the measuring devices of the preceding section to be made clear:
the fourth Stokes parameter is the intensity difference of two circularly polarized
components (right-handed minus left-handed).

There is another representation of the electric field of quasi-monochromatic light
in which the physical interpretation of Stokes V is as natural as that for Stokes Q
and U in the Cartesian representation. This alternative view is more suitable for
a number of problems. In particular, it is very useful in the analysis of radiative
transfer through anisotropic media and is thus very relevant for the second part of
the book (Chapter 7 onwards), so we now describe it.

† Note that measuring I , Q, and U needs no retarder (δ = 0) and the compound analyzer is thus linear.
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Instead of representing the three-dimensional space by an orthonormal set of
Cartesian vectors {x̂, ŷ, ẑ}, let us use the new set of complex vectors

l̂ ≡ 1√
2
(x̂ + iŷ),

r̂ ≡ 1√
2
(x̂ − iŷ),

ẑ ≡ ẑ.

(3.46)

This new set is also orthonormal for the scalar product a . b∗, where a and b are
any three-dimensional vectors.

The reader may have already guessed that the parameters l and r refer to left-
handed and right-handed circularly polarized components respectively. As a matter
of fact,

l̂ = 1√
2
(x̂ + eiπ/2ŷ), (3.47)

so that l̂ represents an electric field whose x and y components have equal am-
plitude (and thus intensity) and for which the difference in phase between the x
and y components is −π/2. Hence, l̂ is the unit vector for left-handed circularly
polarized radiation, according to our convention for handedness. In the same way,

r̂ = 1√
2
(x̂ + e−iπ/2ŷ), (3.48)

so that r̂ represents an electric field whose x and y components have equal am-
plitude (and thus intensity) and for which the difference in phase between the x
and y components is π/2. Therefore, r̂ is the unit vector for right-handed circularly
polarized radiation.

In the basis of right-handed and left-handed circularly polarized vectors, the
electric field of a general quasi-monochromatic plane wave can be written as

E(t) = Er (t)r̂ + El(t)l̂, (3.49)

where we still assume that ẑ represents the wavefront normal. Equation (3.49) does
indeed decompose the electric field into two orthogonally polarized waves, much
in the same way as in Eq. (3.36). The new components can easily be identified in
Cartesian terms. They verify that

Ex(t) = 1√
2

[Er (t) + El(t)] ,

Ey(t) = i√
2

[El(t) − Er (t)] .
(3.50)
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Equations (3.50) allow us to rewrite the coherency matrix elements as

C11 = 1
2〈|Er |2 + |El |2 + El E∗

r + Er E∗
l 〉,

C12 = i
2〈|Er |2 − |El |2 + El E∗

r − Er E∗
l 〉,

C21 = i
2〈|El |2 − |Er |2 + El E∗

r − Er E∗
l 〉,

C22 = 1
2〈|Er |2 + |El |2 − El E∗

r − Er E∗
l 〉,

(3.51)

where the explicit dependence of Er and of El on t has been omitted for simplicity.
With these expressions for C, the Stokes parameters are

I = κ〈|Er |2 + |El |2〉,

Q = κ(〈Er E∗
l 〉 + 〈El E∗

r 〉),

U = iκ(〈El E∗
r 〉 − 〈Er E∗

l 〉),

V = κ〈|Er |2 − |El |2〉.

(3.52)

Therefore, the fourth Stokes parameter is naturally seen as the difference between
the intensities of right-handed and left-handed polarized components of the quasi-
monochromatic light beam.
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4

Linear optical systems acting on polarized light

Porque aquellas cosas que bien no son pensadas, aunque algunas veces hayan buen fin,
comúnmente crı́an desvariados efectos. Ası́ que la mucha especulación nunca carece de
buen fruto.

—Fernando de Rojas, 1514.

For those matters that are ill thought out may yet end well, even though they often breed
strange consequences. Hence, much speculation never fails to bring forth some good fruit.

This chapter is aimed at understanding how nature and laboratory devices may
change the polarization state of light. The transformations of the Stokes param-
eters are assumed to be linear, i.e., in terms of addition and multiplication by
scalars. This is why we are restricted to linear optical systems. The qualifiers
quasi-monochromatic and plane will be omitted from now on under the assump-
tion that we are in fact dealing with this type of electromagnetic wave.

4.1 Propagation of light through
anisotropic media

Changing the polarization state of light means modifying the coherency matrix
elements, which in turn require that different components of the electric field vec-
tor are acted on differently by the medium. If Ex and Ey suffer the same alter-
ation, a scaling of C is effected, so that the polarization state is unchanged. As a
matter of fact, we have seen in the previous chapter how both the linear analyzer
and the linear retarder act differently on given components of E. The wave equa-
tion (2.1), however, predicts no different behavior for the orthogonal components.
This apparent contradiction is resolved when we take into account that Eq. (2.1)
is obtained for isotropic media, which are unable to change the polarization state

36
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of any light beam. Every pair of orthogonal components of the electric field prop-
agates with the same velocity (as derived from the same dielectric permittivity)
regardless of the direction. We are thus driven to consider anisotropic media. Opti-
cal anisotropy may be inherent to the medium because of its crystalline or molecu-
lar structure or may be induced by an external mechanism. Examples of the former
type can be found in most laboratory devices like those we shall be discussing in
Section 4.6. As far as this text is concerned, the paradigmatic case of the second
type of anisotropic system is a stellar (solar) atmosphere permeated by a magnetic
field (see Chapter 8).

If the medium presents dielectric permittivity anisotropies then the relationship
between the electric displacement, D, and the electric field, E, is no longer a scal-
ing relationship (D = εE) and the wave equation does not hold as such. Now
Maxwell’s equations imply that E is not perpendicular to the wavefront normal,
ŝ, while D still is. It can be seen that D is proportional to E⊥, the vector component
of E perpendicular to ŝ in the plane of E and ŝ:

D = ε
[
E − (E · ŝ)ŝ

]
. (4.1)

Quite remarkably, the dielectric permittivity of Eq. (4.1) must depend on the wave-
front direction. D and E then form an angle φ that is non-zero in general. Only
when light propagates in certain directions within the medium does the scalar prod-
uct of E and ŝ cancel out, and then D can be parallel to E, as we shall see presently.

The magnetic field vector, H, associated with the light perturbation remains per-
pendicular to both D and E and to the wave normal, ŝ. The situation is illustrated
in Fig. 4.1. If D and E are in the plane represented by the page, then H points out
of the paper.

If we keep the Poynting vector, S = (c/8π)〈E ∧ H∗〉, as the vector for the
energy flow then we are forced to conclude that energy does not propagate along
the wavefront normal ŝ as in the case of isotropic media but along the ray direction
t̂ = S/S forming with ŝ the same angle φ as that between D and E.

We must then distinguish between the phase velocity (or wavefront velocity),
vp = c/n, and the ray velocity (or energy propagation velocity), vr = vp/ cosφ.
Note that both velocities vary for different directions ŝ or t̂. This is so because we
can no longer talk of a single index of refraction for the medium. If the dielectric
permittivity depends on direction, then so does the refractive index (n = √

ε; we
shall assume from now on that the magnetic permeability, µ, of the medium is
unity, and that it is isotropic).

The simplest way of accounting for anisotropies in ε is to assume that the relation
between D and E is linear:

D = εεE, (4.2)
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t
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Fig. 4.1. Electric field vector, E, electric displacement vector, D, and magnetic field vector,
H (pointing out of the paper), associated with the luminous disturbance in an anisotropic
medium. D propagates in the direction of the wavefront normal, ŝ, but energy propagates
along the Poynting vector direction, t̂, the ray direction. Vectors ŝ and t̂ form the same
angle as vectors D and E.

where the dielectric permittivity is now a tensor (a 3 × 3 matrix). It can be
shown, however, that relationship (4.2) simplifies in a given reference frame. The
validity of the Poynting vector as the energy flow vector is a necessary and suf-
ficient condition (e.g., Born and Wolf, 1993) for the dielectric tensor to be sym-
metric, which is of great help, for there always exists an orthogonal transformation
(TTT = TTT = 11) that diagonalizes εε:

TεεTT = εε′ = diag(ε1, ε2, ε3), (4.3)

where ε1, ε2, and ε3 are the eigenvalues of the dielectric tensor.
If we change the {x̂, ŷ, ẑ} reference frame by this transformation, we obtain the

new frame {ê1, ê2, ê3 | êi · ê j = δi, j , i, j = 1, 2, 3}. This frame is called the
principal reference frame and the unit vectors are oriented in the so-called principal
directions of the medium. In such a reference frame, the relationship (4.2) becomes

 D1

D2

D3


 =


 ε1 0 0

0 ε2 0
0 0 ε3





 E1

E2

E3


 . (4.4)

Therefore, in the frame of principal directions of the medium, the corresponding
components of the electric displacement and of the electric field are proportional.
If E oscillates in any of the principal directions, the angle φ between D and E is
zero.

It can then be shown that the component equations of (2.1) keep the previous
shape in the principal reference frame. The only difference is that each component
now has its own dielectric permittivity:

∇2 Ei − εi

c2
Ëi = 0. (4.5)
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We thus have three main refractive indices, n1, n2, and n3 (ni = √
εi ), three prin-

cipal phase velocities, vp,1, vp,2, and vp,3 (c/ni ), and three principal ray velocities,
vr,1, vr,2, and vr,3. Any two orthogonal components of E (and of D) propagate with
different ray (and phase) velocities. This statement can be reformulated by saying
that every direction, ŝ, of the anisotropic medium admits the propagation of two
waves linearly polarized in orthogonal directions. We now study both of them.

Depending on the values of the three principal permittivities (or refractive in-
dices), two categories can be distinguished for classifying anisotropic media. Ei-
ther two permittivities are equal but different to the third, or all three are different.
Of course, if all the three are equal, we recover the isotropic medium case. The first
class, for which, say, ε1 = ε2 �= ε3 and v1 = v2 �= v3 (both for the ray and phase
velocities), contains the so-called uniaxial media. The second class contains media
for which ε1 �= ε2 �= ε3, so that v1 �= v2 �= v3. Such media are called biaxial.

It is easily understood that uniaxial media present a given direction called the op-
tical axis along which the two orthogonal components of the electric field stream
with the same velocity. The optical axis is obviously ê3 in terms of the above con-
vention. If ŝ = ê3, then E has only components in the plane of ê1 and ê2. Since
ε1 = ε2, both components travel with the same velocity, v1 = v2, and are parallel
to the corresponding components of D. In any other direction, the orthogonal com-
ponents of E have different non-zero projections on ê3. Their propagation, then,
should be studied separately.

Although it is not so easy to visualize, biaxial media present two optical axes,
i.e., two directions for which the two orthogonal components of E stream with the
same velocity. Since most laboratory devices have uniaxial properties, we shall
restrict our analysis here to uniaxial media.† A magnetic stellar atmosphere indeed
has three different refractive indices, so that it is optically biaxial (see Section 8.4).

For any given wavefront direction, ŝ, the plane formed between the optical axis
ê3 and ŝ is called the principal plane of the medium. The electric field vector and
the electric displacement vector can both be considered as the sum of two vector
components:

E = Eo + Ee,

D = Do + De,

(4.6)

where Ee and De are in the principal plane and Eo and Do are in a plane perpen-
dicular to this (see Fig. 4.2). This decomposition is convenient because, besides
being colinear, Eo and Do only have components in the plane of ê1 and ê2, re-
gardless of ŝ. It is readily seen that both propagate with a velocity vo = v1 = v2

† Although we have so far been speaking of the fast and the slow axes of a linear retarder, this does not mean that
the device is biaxial. In fact, either of the axes can be the optical axis; the other simply marks the orthogonal
direction of polarization.
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Fig. 4.2. The electric and displacement fields can always be decomposed into orthogonal
components in the principal plane (the extraordinary components) and in a plane perpen-
dicular to this (the ordinary components). Note that, necessarily, Do ‖ Eo. Therefore,
no distinction can be made between the wavefront direction and the ray direction for the
ordinary component. In general, however, De � ‖ Ee.

independently of ŝ. The velocity, ve, of Ee, however, depends on the propagation
direction since it has components in all three principal directions. The propagation
of a light beam through an anisotropic medium can then be thought of as that of two
linearly polarized beams, one having a velocity independent of direction, the ordi-
nary beam, and the other with a velocity depending on direction, the extraordinary
beam. The ordinary beam propagates “ordinarily”, that is, like any beam through
an isotropic medium: Eo ‖ Do �⇒ t̂ ‖ ŝ and vr,o = vp,o. On the other hand, for
the extraordinary beam t̂ � ‖ ŝ and vr,e �= vp,e, unless the wavefront direction is per-
pendicular to the optical axis. If ŝ ⊥ ê3, then Ee ‖ De also, because both oscillate
along ê3. Note that a given uniaxial medium has as many extraordinary refractive
indices as the possible directions for light propagation throughout the medium.
By convention, manufacturers of polarization devices usually give just one ordi-
nary, no, and one extraordinary, ne, index. The latter is assumed to correspond to
propagation perpendicular to ê3; that is, ne = n3. In the following subsection we
discuss the main observable consequences of the optically anisotropic structure of
the medium.

4.1.1 Measurable effects of anisotropy

The first measurable effect of anisotropy is a phase difference between the ordi-
nary and the extraordinary beams. Consider a light beam impinging on a uniaxial
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medium perpendicularly to the optical axis. In such a case, both the ordinary and
extraordinary rays propagate in the direction of the wavefront normal: their electric
fields and electric displacements are parallel. If no and ne (= n3) are the ordinary
and extraordinary refractive indices, one of the beams is retarded relative to the
other with a linear dependence on the value of β ≡ ne − no. If a slab of thickness
t is traversed, then the total phase difference, called the retardance, is

δ ≡ βt

λ0
= 2πβt

λ0
rad, (4.7)

where λ0 is the wavelength of the wave in vacuum. If β > 0, then the extraordi-
nary beam is retarded by δ. The fast and slow axes we were referring to regarding
retarders in Section 3.5 are evidently the optical axis and another direction perpen-
dicular to this. Depending on the positiveness or negativeness of β, one or the other
will coincide with the optical axis. Note that retardance depends on wavelength.
Moreover, since ne depends on direction, any other beam reaching the anisotropic
medium in a direction other than that of a normal to ê3 experiences a retardance be-
tween the components different from that given by Eq. (4.7). But this phenomenon
is in fact connected with the second measurable effect.

The second effect is called birefringence or double refraction.† Snell’s law of
refraction applied to the transition from vacuum to the anisotropic material gives

sinαi

sinαo
= no;

sinαi

sinαe
= ne(ŝ),

(4.8)

so that the ordinary beam behaves “ordinarily” while the calculation of αe is more
complicated, since the extraordinary refractive index depends on direction (see the
next section). In any case, the two beams necessarily split and behave indepen-
dently within the medium. Note that double refraction is always accompanied by
phase differences. If now to and te stand for the geometric paths of the ordinary
and extraordinary rays, respectively, the retardance is given by

δ = 2π
nete − noto

λ0
. (4.9)

A third effect called dichroism may appear in certain materials. It is just a dif-
ference between the absorption properties for orthogonal polarization states. As a
consequence of dichroism, the ordinary beam may become more attenuated than
the extraordinary one or vice versa.

† The parameter β is also called the birefringence of the medium, but for the effect under discussion there is no
possible confusion.
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A fourth effect may appear in some instances. Since no �= ne, total reflection
can take place just for one of the beams at given interfaces between media. Recall
that total reflection occurs at the boundary between an optically denser medium of
refractive index na and an optically less dense medium of index nb so that nb < na.
If αa and αb are the angles of the incident and refracted waves, Snell’s law gives

sinαa

sinαb
= nb

na
< 1. (4.10)

Equation (4.10) provides no real solution for αb when the incident angle is such
that sinαa ≥ nb/na. Hence, no refracted wave appears and the incident beam is
totally reflected.

4.2 The extraordinary index of refraction
and the energy propagation direction

As pointed out in the previous section, the extraordinary index of refraction de-
pends on direction so that ray tracing in anisotropic media becomes somewhat
elaborate.

Consider both De and Ee as the sum of two orthogonal components in the prin-
cipal plane; namely,

De = De,3 + De,12,

Ee = Ee,3 + Ee,12,

(4.11)

where De,3 and Ee,3 are in the ê3 direction, and De,12 and Ee,12 are in the plane of
ê1 and ê2 (i.e., De,12 = De,1 + De,2; Ee,12 = Ee,1 + Ee,2).

Equation (4.4) implies that

De,3 = ε3Ee,3, (4.12)

and that

De,12 = εoEe,12, (4.13)

where, obviously, εo = ε1 = ε2.
Now εe(ŝ) represents the proportionality constant between De and Ee,⊥, the com-

ponent of Ee perpendicular to ŝ [Eq. (4.1)]:

De = εe(ŝ)
[
Ee − (Ee · ŝ)ŝ

]
. (4.14)

With a little algebra, using Eqs (4.12) and (4.13) and projecting De from Eq. (4.14),
the vector components of the electric displacement turn out to be

De,3 = − Ee · ŝ
[(1/εe) − (1/ε3)]

s3 (4.15)
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and

De,12 = − Ee · ŝ
[(1/εe) − (1/εo)]

s12, (4.16)

where s3 and s12 are the vector components of ŝ along ê3 and in the plane of ê1 and
ê2 (s1 + s2).

Since De ⊥ ŝ, Eqs (4.11), (4.15), and (4.16) give

s2
3

[(1/εe) − (1/ε3)]
+ s2

12

[(1/εe) − (1/εo)]
= 0. (4.17)

Let γ be the angle between ŝ and ê3. Equation (4.17) can then be recast in the
form

1

εe(ŝ)
= 1

εo
cos2 γ + 1

ε3
sin2 γ, (4.18)

and, remembering the definition of refractive index [Eq. (2.2)],

1

n2
e(γ )

= 1

n2
o

cos2 γ + 1

n2
3

sin2 γ, (4.19)

where we have assumed unit magnetic permeability for the medium, which is the
case for most materials of interest to us. Then, ne(γ ) can be interpreted as the
refractive index for the extraordinary beam, which, it should be noted, depends
only on the angle between the wavefront normal and the optical axis. In the two
limiting cases of γ = 0 and γ = π/2 the refractive index for the extraordinary
beam behaves as expected: ne(0) = no and ne(π/2) = n3.

Once we know ne(γ ), Snell’s law [Eq. (4.8)] provides the direction of the re-
fracted wave normal. Let us now calculate the ray direction, t̂, or, in other words,
the angle θ between t̂ and ê3. (Recall that t̂ is also in the principal plane.) Since
De,3 = De sin γ and De,12 = De cos γ , Eqs (4.12) and (4.13) imply that

Ee,3 = 1

ε3
De sin γ, (4.20)

and that

Ee,12 = 1

εo
De cos γ. (4.21)

On the other hand we have Ee,3 = Ee sin θ and Ee,12 = Ee cos θ . Hence, we
obtain

sin θ = 1

ε3

De

Ee
sin γ (4.22)

and

cos θ = 1

εo

De

Ee
cos γ, (4.23)
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from which we finally derive:

tan θ = n2
o

n2
3

tan γ. (4.24)

Therefore, if no < n3 (positive birefringence) then θ < γ (θ = γ − φ). If the
birefringence of the medium is negative, then θ > γ (θ = γ + φ).

4.3 Some notational conventions

Before entering into details, it is convenient to clearly establish a few notational
conventions that are useful in practice and customary in polarization optics. These
conventions, however, are not widely used in the astrophysical literature. By de-
fault, vectors are assumed to be column vectors, hence the above notation I =
(I, Q,U, V )T for the Stokes vector. Four-vectors may be denoted by a scalar fol-
lowed by a three-dimensional vector. With such a convention, the Stokes vector
can be written as

I = (I, Q,U, V )T = I (1, pT)T. (4.25)

Formally, 4 × 4 matrices may be written as 2 × 2 matrices in which the first
element is a scalar, the second element of the first row is a (transposed) three-
vector, the first element of the second row is a three-vector, and the second element
of the second row is a 3 × 3 matrix. Therefore, a general 4 × 4 matrix A may be
written as

A =
(

a bT

c D

)
≡




a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


 , (4.26)

whence

a = a00,

b = (a01, a02, a03)
T,

c = (a10, a20, a30)
T,

D =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 .

(4.27)

Finally, products are understood as products between matrices. Symbols are omit-
ted and aTb is understood as the scalar product and abT is understood as the tensor
product (i.e., a matrix) between vectors a and b.
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The reasons for such a notation are at least four-fold: (1) the total intensity
of a light beam is considered as a scaling factor; (2) the polarization vector is
explicitly used, hence stressing that it belongs to the Poincaré sphere; (3) since
p must belong to the Poincaré sphere, transformations of the polarization state
of light are seen as transformations of three-vectors, i.e., geometrical rotations,
contractions, or dilatations; (4) the algebraic manipulations of IR4 elements and
transformations are simplified to those of IR3,which are easier to handle.

4.4 Transforming the polarization state of light

Since every linear transformation in IR4 can be described by a 4 × 4 matrix, any
linear change in the polarization state of light is represented by a given 4×4 matrix,
the so-called Mueller matrix,

I′ = MI, (4.28)

or, more specifically,


I ′

Q′

U ′

V ′


 =




M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33







I
Q
U
V


 , (4.29)

and, in block component notation:

g

(
1
p′

)
= M00

(
1 hT

v N

)(
1
p

)
, (4.30)

where g is the gain or transmittance of the system, that is, the ratio between output
and input intensities,

g ≡ I ′

I
≥ 0, (4.31)

and the identification of h, v, and N with the matrix elements of Eq. (4.29) is
straightforward after Eq. (4.27). Note that in fact g = g( p); i.e., the transmittance
depends on the input polarization state.

4.5 The Mueller matrix and some of its properties

Not every four-vector is a physically meaningful Stokes vector. Conditions (3.19)
and (3.20) must be fulfilled. Consequently, not every 4 × 4 matrix can be a phys-
ically meaningful Mueller matrix. To meet this definition a 4 × 4 must transform
physical Stokes vectors onto physical Stokes vectors or, equivalently, Poincaré
vectors onto Poincaré vectors, as illustrated in Fig. 4.3. This physical condition
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V’/I’

U’/I’

Q’/I’

V/I

U/I

Q/I

Fig. 4.3. A linear optical system maps the Poincaré sphere onto a subset (an ellipsoid) of
the Poincaré sphere.

requires the Mueller matrix elements to have several properties, some of which
deserve explicit mention:

• The first element must be non-negative:

M00 ≥ 0. (4.32)

This property holds because M00 turns out to be the output intensity correspond-
ing to a natural input. This is easy to see from Eq. (4.29) once it is recalled that
natural light has Q = U = V = 0 (Section 3.4).

• The first row of a physically meaningful Mueller matrix is a physically mean-
ingful Stokes vector:

M00 ≥
√

M2
01 + M2

02 + M2
03. (4.33)

In other words, the vector h appearing in Eq. (4.30) belongs to the Poincaré
sphere and is called the diattenuation vector. Condition (4.33) is equivalent
(necessary and sufficient) to the ratio of the output to input intensities being pos-
itive (i.e., I ′/I ≥ 0). Let us first demonstrate the necessary part of the statement.

Assume that inequality (4.33) is true. Since, according to Eq. (3.22),

3∑
i=1

p2
i ≤ 1,

then

M2
00 ≥

3∑
i=1

M2
0i

3∑
i=1

p2
i ,
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which, according to the Schwarz’s inequality, gives

M2
00 ≥

(
3∑

i=1

M0i pi

)2

;

whence

M00 ≥


3∑
i=1

M0i pi

 ≥ −
3∑

i=1

M0i pi .

Therefore, the first of Eqs (4.29) yields

I ′

I
= M00 +

3∑
i=1

M0i pi ≥ 0.

For the sufficient part we proceed as follows. We look for a minimum of

f (pi ) ≡
3∑

i=1

M0i pi .

Since there is no absolute minimum of f inside (or on the surface of) the Poincaré
sphere, we look for a minimum conditioned to be at the surface of IP. Let l be
defined as

l(pi ) ≡ f (pi ) − k

(
3∑

i=1

p2
i − 1

)
,

where k is a Lagrange multiplier. The minimum of l is located at

pi,min = M0i

2k
,

provided that the second derivative is positive; that is, provided that k < 0. Since
the minimum is on IP,

∑3
i=1 p2

i,min = 1, whence

2k = −
√√√√ 3∑

i=1

M2
0i .

Therefore, the minimum of f we were looking for is

fmin ≡ f (pi,min) = −
√√√√ 3∑

i=1

M2
0i .
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Taking into account now that I ′/I = M00+ f (pi ) ≥ 0 for every pi , we obviously
have:

M00 ≥
√√√√ 3∑

i=1

M2
0i

as we sought to demonstrate.
• The first column of a physically meaningful Mueller matrix is a physically mean-

ingful Stokes vector:

M00 ≥
√

M2
10 + M2

20 + M2
30. (4.34)

This inequality is obtained after bearing in mind that the first column is the
output corresponding to a natural input. Vector v in Eq. (4.30) also belongs to
the Poincaré sphere and is called the polarizance vector.

The diattenuation vector combines input polarization into output intensity and is
seen to govern the gain of the system as a function of the input polarization: the
first row of Eq. (4.30) implies that

g( p) = M00(1 + hTp). (4.35)

The transmittance, then, is not independent of the input unless h = 0. Equa-
tions (4.35) and (4.31) readily explain why M00 must be non-negative [Eq. (4.32)]:
if the input is natural then p = 0 and M00 equals the (non-negative) gain. One can
also obtain maximum and minimum transmittance from Eq. (4.35):

1 − h ≤ g

M00
≤ 1 + h; (4.36)

in other words, g can be neither smaller than 0 nor greater than 2M00 for any
linear optical system. Consequently, passive optical systems (those that do not
have emission properties) must not have M00 greater than 0.5 unless they have a
zero diattenuation vector, since the gain cannot be greater than unity.

The polarizance vector contributes the input intensity to the output polarization.
The second row of Eq. (4.30) gives

g

M00
p′ = v + Np. (4.37)

Hence, if v = 0, natural light on input remains natural on output. In fact, it can
be shown that a system whose polarizance vector is zero has no empolarizing ca-
pabilities, i.e., it cannot increase the degree of polarization of the incoming beam
(see Lu and Chipman, 1998). This last property will be of importance when analyz-
ing the elements of the propagation matrix of an anisotropic medium (Section 7.4).
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Equation (4.37) also tells us that matrix N blends linear with linear and linear
with circular polarizations and vice versa. It plays the role of a rotator and/or a
dilator/contractor in the Poincaré sphere.

All the properties described so far concerning the Mueller matrix elements,
and many others that have been omitted, are necessary conditions. Surprisingly,†
a necessary and sufficient condition for a given 4 × 4 matrix to be a physically
meaningful Mueller matrix was not obtained until 1993 by Givens and Kostinski.
An alternative formulation of the same condition, suitable for application to ex-
perimental Mueller matrices, can be found in Landi Degl’Innocenti and del Toro
Iniesta (1998).

4.6 Block components of (solar) polarimeters

As outlined in Section 3.5, measuring the polarization state of light relies upon
transforming that state by means of specially suited devices, (compound) analyz-
ers, also called polarimeters. The transformation is such that we measure intensities
(hereafter also referred to as polarimetric signals) that are linear combinations of
the Stokes parameters [e.g., Eq. (3.44)]. Once we know the basic mathematics
of such a transformation, it is convenient to characterize those block components
of the polarimeter by explicitly giving their Mueller matrices, which are obtained
either by applying Eq. (4.29) to particular inputs for which the output is known or
by direct derivation from the characteristic changes of the vector electric field after
traversing the system.

4.6.1 Rotation of the reference frame

Since the reference frame is very relevant in describing the vector properties of the
electric field and is in fact governed by the properties of the medium, let us first
consider possible rotations in a plane perpendicular to the propagation direction.
Every such rotation of angle θ measured counter-clockwise from the positive X
axis is described by the matrix

G(θ) =




1 0 0 0
0 c2 s2 0
0 −s2 c2 0
0 0 0 1


 (4.38)

such that

GGT = GTG = 11, (4.39)

† The Mueller matrix formalism was proposed in the 1940s.
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where GT(θ) = G(−θ), 11is the 4 × 4 identity matrix, and c2 and s2 are cos 2θ and
sin 2θ , respectively.

After a rotation of the reference frame, Stokes vectors and Mueller matrices
transform according to the following formulae:

I′ = GTI;

M′ = GTMG.

(4.40)

Note that the rotation angle is doubled because of the quadratic nature of the Stokes
parameters as functions of the Cartesian components of the electric field. More-
over, a rotation of angle θ of the reference frame is felt by the Stokes vector as a
rotation of −θ . The reason is simple: linearly polarized light at an angle α becomes
linearly polarized at an angle α − θ after rotation of the frame.

The shape of matrix G directly implies that both I and V are independent of
the reference system, while Q and U are not. A rotation of the reference system
changes the values of the linear polarization parameters but Q2 + U 2 remains un-
altered. In other words, the intrinsic parameters of the light beam are the intensity
and the degrees of linear polarization,

√
Q2 + U 2/I , and of circular polarization,

V/I . Of course, the total degree of polarization, p, is also independent of the refe-
rence system.

4.6.2 The linear analyzer–polarizer

Analyzers are those polarization devices used for deriving the polarization state of
light. Since we measure only intensities, the analyzers could be characterized by
transmittance properties dependent on the input polarization state. In this broad
sense, every linear system with a non-zero diattenuation vector could act as an
analyzer in the sense that it always presents (different) maximum and minimum
transmittance [Eq. (4.36)]. The maximum transmittance, M00(1 + h), is obtained
for vectors p forming an angle arccos (1/p) with the diattenuation vector, and the
minimum transmittance, M00(1 − h), is reached for −p. That is, maximum trans-
mittance is reached when hTp = h and minimum transmittance results for a po-
larization vector such that hTp = −h. As illustrated in Fig. 4.4, all vectors lying
within or on the surface of the upper cone of the figure form an angle arccos (1/p)
with h. Those lying within or on the surface of the lower cone form an angle
arccos (−1/p) with h. Note that all these vectors necessarily have magnitudes
p ≥ 1 since the base of the cone is tangential at just one point to IP. Vectors of
magnitude p > 1 do not belong to IP. Thus, the only vector of the cone belonging
to IP is ĥ. Depending on the input degree of polarization, the cone is broader or nar-
rower, but qualitatively similar: all the vectors within it except ĥ have magnitudes
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V/I

U/I

Q/I

h

Fig. 4.4. Every Mueller matrix with diattenuation vector h has maximum transmittance
for those vectors forming an angle arccos(1/p) (upper cone) and minimum transmittance
for those forming an angle arccos(−1/p) (lower cone). Among these, the only physically
meaningful polarization vectors are ĥ and −ĥ because the other have p > 1. The dashed
line represents a diameter of the Poincaré sphere.

greater than unity. Therefore, the only physically meaningful polarization state for
which transmittance is maximum turns out to be ĥ. Analogously, transmittance
is at a minimum for −ĥ. If the diattenuation vector is already a unit vector, the
maximum transmittance is 2M00 and the minimum transmittance is zero. These
arguments lead to the definition of analyzers that follows.

A linear optical system whose transmittance is 2M00 for a given totally polarized
state p̂0 and completely blocks the orthogonal state −p̂0 is called a perfect analyzer,
or simply an analyzer for p̂0. In mathematical terms, this definition leads to

gmax = g( p̂0) = 2M00;

gmin = g(−p̂0) = 0.
(4.41)

According to Eqs (4.35) and (4.36), conditions (4.41) are fulfilled if and only if
h = p̂0. Since h = p0 = 1, we can then say that a (physically meaningful) Mueller
matrix describes a perfect analyzer if and only if it has a unit diattenuation vector
ĥ. It then describes an ĥ analyzer.

Rather than regarding the input polarization state as in the case of analyzers,
one may be interested in characterizing some polarization systems by attending to
the properties of the outcoming state of polarization. The definition of polarizers
follows the latter option.

A linear optical system whose output is always a given totally polarized vector p̂0

is called a perfect polarizer, or simply a p̂0 polarizer. For such a system, Eq. (4.30)
becomes

g( p)
M00

(
1
p̂0

)
=

(
1 hT

v N

)(
1
p

)
, ∀ p ∈ IP. (4.42)
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Equation (4.42) certainly characterizes the Mueller matrix of the system since
it holds if and only if v = p̂0 and N = p̂0hT, as we shall see. First, consider the
necessary part of the statement. If Eq. (4.42) is valid for all polarization states, for
the particular case of unpolarized input, p = 0, one readily obtains v = p̂0, since
(1, vT)T is the output Stokes vector corresponding to natural light for every optical
system. Moreover, necessarily, the second row of Eq. (4.42) tells us that

p̂0(1 + hTp) = p̂0 + Np, ∀ p ∈ IP, (4.43)

since Eq. (4.35) holds for every optical system.
Solving Eq. (4.43) for p̂0 we obtain

p̂0 = Np
hTp

, ∀ p ∈ IP, (4.44)

but this can happen if and only if

N = p̂0hT. (4.45)

This last result (4.45) provides the way back to demonstrating the sufficient part
of the above statement. Therefore, the general structure of a polarizer Mueller
matrix is

M = M00

(
1 hT

v̂ v̂hT

)
. (4.46)

It is interesting to note that, if M is the Mueller matrix of a polarizer, then its
transpose, MT, is necessarily the Mueller matrix of an analyzer. Lu and Chipman
(1996) say that the condition is also sufficient but give no convincing demonstra-
tion. Obviously, if h is also a unit vector in Eq. (4.46), the system is both a perfect
polarizer and a perfect analyzer.

Particularizing to the case of our linear analyzer–polarizer (as defined in
Section 3.5), it is easy to show that

L(θ) = 1

2




1 c2 s2 0
c2 c2

2 c2s2 0
s2 c2s2 s2

2 0
0 0 0 0


 , (4.47)

where c2 = cos 2θ , s2 = sin 2θ , and θ is the angle of the optical axis relative to the
positive X axis.

A glance at Mueller matrix (4.47) readily indicates that the linear analyzer–
polarizer always increases to unity the degree of polarization of partially polarized
light because light is always linearly polarized on output at an angle
θ : I′ = 1/2(I + c2 Q + s2U )(1, c2, s2, 0)T. Moreover, rotating the device implies a
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modulation of the polarimetric signal according to the variation of the elements of
its diattenuation vector.

4.6.3 The partial linear polarizer

The linear analyzer–polarizer described in the previous section is a particular case
of the system we are dealing with now. Imagine that, instead of showing maximum
transmittance and completely blocking two orthogonal components of the electric
field vector, the amplitudes Eθ and Eθ+90◦ were affected by two positive constant
factors, k1 and k2, respectively. If we denote α ≡ k2

1 + k2
2, β ≡ (k2

1 − k2
2)/α, and

γ ≡ 2k1k2/α, the Mueller matrix of such a system turns out to be

M(θ) = α

2




1 βc2 βs2 0
βc2 c2

2 + γ s2
2 (1 − γ )c2s2 0

βs2 (1 − γ )c2s2 s2
2 + γ c2

2 0
0 0 0 γ


 . (4.48)

Note that matrix M(θ) reduces to L(θ) in Eq. (4.47) when k1 = 1 and k2 = 0.
Equation (4.48) describes the Mueller matrix of a partial linear polarizer. The
name comes from the fact that it outputs the partially polarized state, p′ =
1/2(k2

1 − k2
2) (c2, s2, 0)T, as a response to an unpolarized input. Nevertheless, the

exiting polarization state depends on the input state. For instance, the system de-
livers elliptical (partially) polarized light for a circular (totally) polarized input.

4.6.4 The linear retarder

A linear retarder of retardance δ with its fast axis at an angle θ with the X axis has
a Mueller matrix of the form

R(θ, δ) =




1 0 0 0
0 c2

2 + s2
2 cos δ c2s2(1 − cos δ) −s2 sin δ

0 c2s2(1 − cos δ) s2
2 + c2

2 cos δ c2 sin δ

0 s2 sin δ −c2 sin δ cos δ


 . (4.49)

Therefore, the linear retarder neither increases the degree of polarization nor
modulates the polarimetric signal because of its zero polarizance and diattenuation
vectors. It only rotates the input polarization vector in the Poincaré sphere since its
3 × 3 N matrix is a rotation matrix in IR3. This property can easily be checked by
verifying that NNT = NTN = 11 and det (N) = 1. Retarders are also called wave
plates. When δ = π/2 rad, i.e., βt = λ0/4 for input light perpendicular to
the optical axis [Eq. (4.7)], the retarder is said to be a quarter-wave plate; when
δ = π rad, the retarder is called a half-wave plate.



54 Linear optical systems acting on polarized light

4.6.5 The Mueller matrix of an optical train

In most instances, the polarimeter is made up of various components as for the case
of the prototypical polarimeter we have been discussing. The total transformation
is then described by the product of the individual Mueller matrices in the proper
order, since matrix multiplication is non-commutative. If light encounters n block
components, with i = 1, 2, . . . , n in this order, each one having a Mueller matrix
Mi , the Mueller matrix of the whole system is

M = MnMn−1 . . . M2M1. (4.50)

It is worth noting that the Mueller matrix of two (or more) linear retarders is
the Mueller matrix of an equivalent retarder, because the product of IR3 rotation
matrices is itself a rotation matrix:

R1R2 =
(

1 0T

0 N1

)(
1 0T

0 N2

)
=

(
1 0T

0 N1N2

)
. (4.51)

This mathematical property very nicely fits the physical action of retarders on the
electric field vector: two successive phase shifts, δ1 and δ2, must be equivalent to a
single shift, δ1 + δ2.

The Mueller matrix of our example (see Fig. 4.5), a retarder whose fast axis is
inclined at an angle θ plus a linear polarizer at 0◦, is M(θ, δ) = L(0)R(θ, δ):

M(θ, δ) = 1

2




1 c2
2 + s2

2 cos δ c2s2(1 − cos δ) −s2 sin δ

1 c2
2 + s2

2 cos δ c2s2(1 − cos δ) −s2 sin δ

0 0 0 0
0 0 0 0


 . (4.52)

Note that M is the Mueller matrix of an analyzer and of a polarizer (h = 1, v = 1,

and N = v̂ĥ
T
). Depending on the relative orientation of the axes of the retarder

and that of the linear analyzer, one could think of many configurations for the
polarimeter. An example is illustrated by the so-called right-handed circular ana-
lyzer, in which the linear polarizer has its optical axis inclined at 45◦ to those of a
quarter-wave plate (δ = π/2). Such a device has the following Mueller matrix:

M(θ) = L(π/4 + θ)R(θ, π/2) = 1

2




1 0 0 1
−s2 0 0 −s2

c2 0 0 c2

0 0 0 0


 , (4.53)

where θ is again the angle between the fast axis of the retarder and the X axis. The
reader can easily check that Eq. (4.53) represents an analyzer (h = 1) that com-
pletely transmits right-handed circular polarization and completely extinguishes
left-handed circular polarization. It represents a polarizer as well: the output state
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Fig. 4.5. The basic polarimeter consists of a linear retarder and a linear analyzer–polarizer.

of polarization is always I′ = 1/2(I + V )(1,−s2, c2, 0)T, i.e., linearly polarized
light at an angle of θ +π/4. Should the linear analyzer have been oriented at 135◦,
one would have obtained a left-handed circular analyzer.

To illustrate the importance of order in matrix multiplication, let us consider the
reverse system, i.e., the linear analyzer followed by the retarder with axes at ±45◦.
Its Mueller matrix is

M(θ) = R(θ, π/2)L(π/4 + θ) = 1

2




1 −s2 c2 0
0 0 0 0
0 0 0 0

−1 s2 −c2 0


 . (4.54)

Now, we have a linear analyzer (h = 1) whose transmittance is at a maximum for
light linearly polarized at θ + π/4, and a left-handed circular polarizer (v = 1)
because it always outputs I′ = 1/2(I − s2 Q + c2U )(1, 0, 0,−1)T.

4.7 Spatial and temporal modulation

A single measurement of the polarimetric signal is not enough to determine all
four Stokes parameters of the incoming radiation. One has to modify the diattenu-
ation vector of the analyzer (e.g., by modifying θ and/or δ) in order to change the
polarimetric signal. At least four measurements are required. Some polarimeters,
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however, need more than four measurements, as we will see later. Modifications
of h can be done in space, in time, or in both. The general equation for the polari-
metric signal reads

Imeas(t; x) = M00 [Iin + h1(t; x)Qin + h2(t; x)Uin + h3(t; x)Vin] , (4.55)

where (Iin, Qin,Uin, Vin)
T is the input Stokes vector, and the diattenuation vector

of the polarimeter is parameterized as a function of time (t), space (x), or both.
Imagine, for instance, that a single detector is being used, and that the polarimet-

ric signal is only temporally modulated. With the measurements taken at n given
times one can construct a system of linear equations,

Imeas = OIin, (4.56)

where Imeas ≡ (Imeas(t1), Imeas(t2), . . . , Imeas(tn))T is a polarimetric signal vector
and the matrix O is called the modulation matrix. Finding the input Stokes vector
then involves nothing more than inverting the modulation matrix. When the po-
larimeter is such that only four measurements are needed, O has a unique inverse.
In other cases, special strategies have been devised to optimize the demodulation
process (see Section 5.2).

Since the basic polarimeter consists of a linear retarder and a linear analyzer, we
have three basic parameters to modify with space or time, namely, the retardance
of the retarder, the orientation angle of the retarder, and the orientation angle of
the analyzer–polarizer.

4.7.1 Spatial modulation

In a broad sense, by spatial modulation is meant the modification within a sin-
gle (two-dimensional) detector or between two (simultaneously used) detectors of
some of the above free parameters. In this section, three examples are shown. Two
of them can be used with a single detector, namely, the Babinet compensator and
the double birefringent plate; the third example, the polarizing beam splitter, often
employs two detectors.

4.7.1.1 The Babinet compensator

The Babinet compensator is a linear retarder whose retardance varies linearly in a
given direction. It consists of two wedges of quartz (positive birefringence) with
exactly equal acute angles that are put in contact as in Fig. 4.6, and that can be
displaced with respect to each other in the x direction. The optical axes of both
wedges are parallel to the input and output faces of the compensator but are or-
thogonal between them (one is in the plane of the paper and the other perpendic-
ular to it). Thus, the ordinary beam for the first wedge becomes extraordinary for
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t1 t2

X

Fig. 4.6. The Babinet compensator. The optical axis of the first wedge is parallel to the
vertical shadowing. The optical axis of the second is perpendicular to the plane of the
figure.

the second, and vice versa. If the incoming radiation is perpendicular to the faces
of the compensator, the wave normal is perpendicular to the optical axis of the
medium at any time. No double refraction, then, takes place and only retardation is
produced. Both the ordinary and the extraordinary rays stay in the same direction
as that of the incoming radiation. Of course, if the retardance is positive for the
first wedge then it is negative for the second, or vice versa. Therefore, if t1 and t2
are the thicknesses of the wedges at a given position x , the total retardance depends
on the difference t1 − t2:

δ = 2π

λ0
β(t1 − t2) = 2π

λ0
β(a + bx), (4.57)

where a and b are constants that can easily be determined from the displacement
between the wedges.

A combination of two compensators with their optical axes at 45◦ relative to each
other plus a linear analyzer allows measurement of the four Stokes parameters. The
demodulation is made in the (spatial) Fourier domain with the help of numerical
filters. However, this solution is not widely used in practice because of the limited
field of view for a given number of pixels of the detector (see Stenflo, 1994).

4.7.1.2 The double birefringent plate

If a block of quartz (or another birefringent crystal) is cut such that its optical axis
forms an angle with the input and output faces of the crystal, a normally incident
beam is spatially split in two at the output (see Fig. 4.7): the ordinary ray is not
deviated from the original direction while the extraordinary is refracted at an an-
gle φ (Sections 4.1 and 4.2). Since the optical path of the two beams is not the
same, the extraordinary beam is also retarded (positively or negatively) relative to
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Fig. 4.7. The double birefringent plate. Note that the principal axes are parallel to the top
and bottom faces for the first plate and parallel to the lateral faces for the second plate. The
separation between ordinary and extraordinary rays always takes place on the principal
plane.

the ordinary one depending on both β and the geometrical path of each ray. If
one is interested only in spatially separating the two orthogonal states without any
phase shift between them, an exactly equal plate can be placed behind the first but
rotated by 90◦, as in the figure. In this way, the extraordinary beam for the first
plate becomes ordinary for the second and vice versa. Since the second phase shift
between the two beams is the opposite to that of the first, in the end one has both
beams spatially separated but no longer phase-shifted. Therefore, the double bire-
fringent plate may play the role of a double linear analyzer with Mueller matrices
given by

MEO = 1

2




1 c2 s2 0
c2 c2

2 c2s2 0
s2 c2s2 s2

2 0
0 0 0 0


 (4.58)

for the beam which is extraordinary for the first crystal and

MOE = 1

2




1 −c2 −s2 0
−c2 c2

2 c2s2 0
−s2 c2s2 s2

2 0
0 0 0 0


 (4.59)

for the beam which is ordinary for the first crystal. In Eqs (4.58) and (4.59), the
notation c2 = cos 2θ and s2 = sin 2θ is kept where θ stands for the angle between
the projection of the fast optical axis of the first plate on the XY plane and the
positive X axis. (The Z axis is still assumed to mark the direction of the wave
normal.)

The intensities of the two states of polarization can be measured simultaneously
in different parts of the same detector because the output direction coincides with
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the input direction for both beams. However, the double image produced by the
double plate implies an overlapping of the OE and EO beams coming from different
points of the object. In order to avoid this effect, half of the object should be shad-
owed properly.

An interesting example of a practical solution is provided by the Stokes V po-
larimeter designed by Semel (1981), in which the double birefringent plate is pre-
ceded by a quarter-wave plate whose axes are at 45◦ and 135◦ relative (in the XY
plane) to the optical axis of the first plate. Therefore, one beam experiences a right-
handed circular analysis and the other a left-handed circular analysis. On output,
one has a beam of intensity proportional to (I +V ) and another of intensity propor-
tional to (I − V ) of the incoming radiation. The Semel polarimeter was designed
for spectropolarimetric observations, that is, for spectroscopic observations of light
whose polarization properties have been previously analyzed. For these types of
observations, the polarimetric analyzer is often located just behind the spectro-
graph slit.† The slit is always in the focal plane of the telescope where an image
of the Sun is formed, so that only light from that part of the Sun lying over the
slit is allowed to enter the spectrograph. If the slit is covered by an opaque comb-
like grid with holes exactly separated by the distance between the double images,
overlapping in the focal plane of the spectrograph is avoided. The splitting of im-
ages should in principle be small to minimize optical aberrations in the crystal.
However, an elaborate solution has been found (Semel, 1987) and the opaque grid
can be as simple as one that covers half of the slit. Thus, for every observed re-
gion of the Sun we can measure I ± V at the same time in different rows of the
detector.

4.7.1.3 Polarizing beam splitter

A similar spatial modulation can be achieved with the so-called polarizing beam
splitter. As illustrated in Fig. 4.8, the two orthogonal, linearly polarized compo-
nents of the incident beam are split in two different directions. The extraordinary
beam continues in the original direction while the ordinary beam deviates by reflec-
tion at the interface between two pieces of an originally single block of birefringent
crystal. The original block is cut and then stuck with an optical cement whose in-
dex of refraction is such as to produce total reflection of the ordinary beam. The
two Mueller matrices each corresponding to the action of the beam splitter on each
of the orthogonal components, are in fact equal to those of the double birefrin-
gent plate. Hence, a polarimeter using a beam splitter as the linear analyzer can
measure two orthogonal states simultaneously but with different detectors in most
cases.

† See a discussion on the location of the polarization analyzer in Section 5.1.
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e3

Fig. 4.8. The beam splitter. Total reflection takes place at the interface for the ordinary
beam in this example.

If either a double birefringent plate or a polarizing beam splitter is used as a
spatial modulator, then the four Stokes parameters cannot all be measured simul-
taneously. Nevertheless, one can separate intensity from polarization information
by simply adding and subtracting the two output beams. To understand this, let
us consider any of these systems as a double polarimeter with two Mueller matri-
ces, MP1 and MP2 . Both matrices are the products of matrices MEO and MOE of
Eqs (4.58) and (4.59) with the matrix of the retarder, R, respectively. Since the
diattenuation and polarizance vectors of MOE and MEO are anti-parallel, so are the
diattenuation and polarizance vectors of MP1 and MP2 :

MP1 = 1

2

(
1 hT

h hhT

)(
1 0T

0 NR

)
= 1

2

(
1 hTNR

h hhTNR

)
, (4.60)

MP2 = 1

2

(
1 −hT

−h hhT

)(
1 0T

0 NR

)
= 1

2

(
1 −hTNR

−h hhTNR

)
, (4.61)

where h = hEO = −hOE. Then, if we call h′ ≡ NRh, the polarimetric signals of
the two beams are

Imeas,1 = 1

2
(Iin + h′

1 Qin + h′
2Uin + h′

3Vin), (4.62)

Imeas,2 = 1

2
(Iin − h′

1 Qin − h′
2Uin − h′

3Vin), (4.63)

which, after addition and subtraction give

Imeas,1 + Imeas,2 = Iin (4.64)
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Imeas,1 − Imeas,2 = h′
1 Qin + h′

2Uin + h′
3Vin (4.65)

as we wanted to demonstrate.
In some particular cases, one may be interested in just measuring one of the

three last Stokes parameters. This circumstance might be due, for example, to pre-
vious knowledge that in a given object only linearly or circularly polarized light
is emitted, or that Stokes Q and Stokes U are significantly less than Stokes V
and can safely be neglected. The double measurement of Eqs (4.62) and (4.63)
is sufficient. As an example, the aforementioned Semel Stokes V polarimeter en-
ters into this category. Its design is such that h′

1 = h′
2 = 0 and h′

3 �= 0. As
we shall see in Chapter 5, however, modern accurate solar polarimetry almost al-
ways requires a full polarization analysis. Therefore, the two last options for spa-
tial modulation are not enough and are often used in combination with temporal
modulation.

4.7.2 Temporal modulation

If in the general expression (4.55) for the polarimetric signal the only parameter is
time, the modulation is called temporal:

Imeas(t) = M00 [Iin + h1(t)Qin + h2(t)Uin + h3(t)Vin] . (4.66)

The components of the diattenuation vector of the polarimeter may vary with
time in many different ways, of which we point out two:

• Rotation of the retarder. If one allows the retarder to rotate with an angular fre-
quency �, the orientation angle of its fast axis varies as θ(t) = �t . This effects
a quadratic sinusoidal modulation of the retarder Mueller matrix and hence the
polarimeter Mueller matrix becomes time modulated.

• Electro-optical modulators. Electro-optical modulators are birefringent devices
whose retardance or orientation angle vary after the application of an external
electric field. Examples are piezo-elastic modulators and nematic liquid crystals
(variable retardance) and ferroelectric liquid crystals (variable orientation).

Piezo-elastic modulators are made of glass in which birefringence is induced
by a transducer that establishes a standing acoustic wave between the walls at the
fundamental-mode frequency of the material. The oscillating pressure generates
an oscillating strain, which in turn produces a variable retardance at the same
frequency, typically at 50 kHz, which is kept very stable because it equals the
resonant frequency of the glass block.

Liquid crystals are anisotropic molecules which can be oriented to form bire-
fringent layers. Hence, such molecules, suitably aligned within glass plates, can
be used as retardation plates. Nematic liquid crystals are made of several layers
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νI νQ νU νV

Fig. 4.9. Idealized shape of the power spectrum of a perfectly modulated polarimetric
signal. The distributions for I , Q, U , and V are well separated from each other. νI = 0
always. Scales are arbitrary.

of such molecules (typical thickness ≈ 6 �m) whose orientation is varied by the
application of an external voltage. It is the orientation variation of the molecules
that induces a time-varying retardance.

Ferroelectric liquid crystals are made of a very thin layer (typical thickness
≈ 2 �m) of materials that have the following properties: (1) the ferroelectric cell
behaves as a constant-δ retarder; (2) once a voltage is received, the liquid crystal
switches between the only two possible orientations of the axis (the only two
quantum states of its spontaneous polarization vector); and (3) the flipping time
between states is very fast (up to kHz).

The ideal polarimeter based on temporal modulation should be such that the
three components of the diattenuation vector oscillate with frequencies that are
different enough to avoid overlapping of the spectral features of I , Q, U , and
V . The I spectrum is always centered at νI = 0 (the DC component) because
the first Stokes parameter is not temporally modulated [e.g., Eq. (4.66)]. This
ideal situation is sketched in Fig. 4.9, where the square modulus of the Fourier
transform of Imeas(t) is drawn on the assumption that νQ < νU < νV . In such a
situation, simple band-pass filters allow the independent recovery of all four Stokes
parameters. The separation between the amplitude and phase spectra of Stokes I ,
Q, U , and V depends on the polarimeter design, and, of course, some overlapping
may remain. Such overlapping induces cross-talk between the Stokes parameters
that in the end determines the polarimetric accuracy of the system.
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5

Solar polarimetry

If it were not for its magnetic field, the Sun would be as dull a star as most astronomers
think it is.

—R. Leighton, 1965.

Polarimetric accuracy is one of the most important goals of modern astronomy.
The definition itself of polarimetric accuracy, however, is difficult since we mostly
measure polarization differences and are uncertain in establishing the zero level,
which is often set by convention. Hence, by “accuracy” we shall understand the
sensitivity to variations of the polarization level. Besides the greatest polarimetric
accuracy, every astronomical observation should ideally pursue the highest spec-
tral, spatial, and temporal resolution with the widest spatial and spectral coverage.
However, all these goals are hard to accomplish at the same time and one always
needs to compromise depending on the specific objectives a given observation is
aimed at. The amount of available photons from the Sun is never sufficient. In fact,
it is equal per resolution element to that from a scarcely resolved star of the same
effective temperature. This observational fact is easy to understand (e.g., Mihalas,
1978) if one takes into account the invariance with distance of the specific intensity
(energy per unit normal surface, per unit time, per unit frequency interval, per unit
solid angle) and its proportionality to the photon distribution function (number of
photons per unit volume, per unit frequency interval, per unit solid angle).

Solar polarimetry is, of course, a part of the game and has several limiting fac-
tors that govern the final accuracy of the measurements. These factors can be
categorized into two main groups, namely, the environmental polarization and the
characteristics of the polarization analysis system itself. Both groups are discussed
separately in this chapter. A few words on wavelength dependence are of common
interest to both groups, however.

64



5.1 Environmental polarization 65

Most optical elements found by light on its path from the source to the detector,
including the Earth’s atmosphere, have polarization properties dependent on wave-
length. For instance, from the definition of retardance (4.7), it is easy to see that a
quarter-wave plate for a given wavelength could not be such for other wavelengths
even if the refractive indices were not wavelength dependent. But n does depend
on wavelength, as has been well known since Newton’s experiments on prismatic
colors. This further complicates the design of polarimeters if one wants to keep
them achromatic, or implies differences in those designs that are contingent on the
working spectral range (e.g., visible or infrared) of the polarimeter. The details
concerning chromaticity are beyond the scope of this chapter but should be borne
in mind by the reader. A discussion about absorption and dispersion, and hence
on the wavelength dependence of refractive indices, is presented in Chapter 6. In
most practical cases, calibration of both the environment and the analyzer is needed
prior to properly interpreting the results at given (different) wavelengths.

5.1 Environmental polarization

The environment influences astronomical polarimetry and even may jeopardize the
reliability of the results. By “environment” we mean all the systems other than
the polarimeter that may alter the polarization state of the incoming light. This
is the opposite situation to that of laboratory polarimetry, where all the condi-
tions external to the experiment can be controlled. Therefore, astronomical po-
larimetry should not only take care of the analyzer Mueller matrix but also of the
Mueller matrices of all other systems involved in the optical train of observations.
Within environmental systems we can clearly distinguish the Earth’s atmosphere
and the instrumental set-up. Consequently we can speak of atmospheric polari-
zation, also called seeing-induced polarization, and of instrumental polarization.
Seeing-induced polarization can be avoided only if the observations are carried
out on board a spacecraft or a stratospheric balloon, i.e., outside the disturbing
effects of the Earth’s atmosphere. Instrumental polarization can be avoided only
if the polarimetric analysis is performed before the light encounters any feed or
beam-steering optics, but this is unfeasible because of the usually small apertures
of polarimeters. Minimizing both seeing-induced and instrumental polarization is
more likely, however.

A typical observation is affected by the Earth’s atmosphere, the telescope, the
polarimeter, the spectrograph, and the detector. If the Mueller matrices of these
elements are respectively called MA, MT, MP, MS, and MD, and light streams
through these systems in that order, the ensemble Mueller matrix is then

M = MDMSMPMTMA. (5.1)



66 Solar polarimetry

The solar Stokes parameters, Isun, are thus related to the observed Stokes
parameters, Iobs, by Isun = M−1Iobs. The accuracy of the measurements then de-
pends on an accurate knowledge of matrix M (and on the existence of its inverse
matrix!).

It is easily seen that if one (or some) of the systems is (are) not properly taken
into account (or even neglected) the final result may differ from reality. Neverthe-
less, a distinction must be made among those systems located in the optical train
before and after the polarimeter. By far, the most relevant degrading effects arise
from the systems located before the polarimeter, as we shall see. After interaction
with those systems prior in the optical train to the analyzer, the Stokes parameters
become linear combinations of the original ones [Eq. (4.29)]. The polarimeter thus
measures “falsified” Stokes parameters. We must know exactly how Isun has been
modified in order to correct for this modification. However, on output, the analyzer
encodes the polarization information in a known way. Typically, the output state
of polarization from the polarimeter is always the same and is the intensity of light
which carries the information on the object’s polarization. Hence, only the gain
or transmittance properties of the subsequent systems in the optical train need to
be taken into account for a few given states of polarization. Therefore, locating
the polarimeter in front of the telescope would seem to be good advice. [Note that
the order of matrices in Eq. (5.1) would necessarily have to be altered.] Unfor-
tunately, such a solution is not feasible in practice since polarimeter apertures are
usually much smaller than telescope apertures. Polarimeters are therefore located
as early in the optical train as possible in order to minimize instrumental effects.

The environmental polarization is not only relevant to polarimetric observations.
Imagine carrying out standard spectroscopic observations without performing any
polarization analysis. If light coming from the object were partially polarized, the
observed intensity spectrum would indeed be a linear combination of the object
Stokes parameters [e.g., Eq. (4.66)] and not just the intensity, as we would like it
to be. The problem becomes even more significant if we take into account that
the degree of polarization generally varies across the profile of a single spectral
line (see an excellent discussion of the problem in Sánchez Almeida and Martı́nez
Pillet, 1992). Broad-band (i.e., photometric) observations may sensu stricto suffer
from the same problem: differences in the measured intensities of two regions of
the Sun may come from differences in the degree of polarization. Nonetheless solar
broad-band polarization is not as large as spectral line polarization, except perhaps
in such features as sunspots.

5.1.1 Seeing-induced polarization

Sunlight is scattered and refracted by terrestrial atmospheric particles. In general,
scattering processes induce polarization effects, so MA might be non-diagonal.
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Note that a Mueller matrix proportional to the identity matrix represents only a
scaling of the Stokes vector. Pure absorption processes have such Mueller matrices.
Fortunately, the diagonal matrix elements of MA are almost identical and the non-
diagonal ones can safely be ignored for solar observations (see Martı́nez Pillet,
1992): atmospheric scattering is mostly single and, for the angles of interest (the
Sun subtends an angular diameter of approximately half a degree), non-diagonal
terms are of the order of 10−5 or less than diagonal ones. The contributions from
refractive index perturbations are even less important. Therefore, for the purposes
of solar polarimetry up to the 10−5 level of accuracy, a frozen atmosphere has
MA ∝ 11.

But the Earth’s atmosphere is not static. Temporal fluctuations produce wave-
front distortions which in turn induce spatial image smearing and spurious polari-
zation features. If the solar atmosphere is assumed to be static for the time
interval of measurements – which is a reasonable assumption – spatial smearing
can be characterized by averages (〈δIseeing〉, 〈δQseeing〉, 〈δUseeing〉, and 〈δVseeing〉)
that represent the contributions to every resolution element from its surroundings.
In other words, the Stokes parameters measured on every pixel are those intrinsic to
the solar region plus these spatial averages. Since the polarization state is not spa-
tially constant over the solar surface, spatial resolution is lost not only in intensity
images but also in all four Stokes parameter images. Besides this spatial smearing,
spurious polarization features may appear in the observations as a consequence of
slow modulation during the measurement process. Let us characterize this effect
by a contribution δIseeing(t) to the observations. If we then call IA the Stokes vector
after the light has traveled through the atmosphere, we have

IA = Isun + 〈δIseeing〉 + δIseeing(t), (5.2)

where we have neglected possible scaling factors.
Spatial smearing can be mitigated with high spatial resolution techniques such

as adaptive optics, or speckle interferometry, formerly developed for unpolarized
observations. We shall hereafter neglect the contribution of 〈δIseeing〉 in Eq. (5.2) on
the assumption that corrections for image smearing have already been made. These
high resolution techniques, however, are not able to avoid intermixing among
Stokes parameters that produces spurious polarization features. The fluctuating
polarization, δIseeing(t), induced by seeing contributes with frequencies of the or-
der of 100 Hz to the signal thus broadening the spectral content of all four Stokes
parameters.† Fast temporal modulation, then, is required at frequencies higher than

† Although the terms are misleadingly similar, the reader must distinguish between spectrum referring to the
Fourier transform of the polarimetric signal as a function of time and spectrum referring to the wavelength
dependence of the Stokes parameters.
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νI νQ νU
νV

Fig. 5.1. Idealized view of the influence of seeing on the amplitude spectrum of the
polarimetric signal. The individual distributions are broadened and overlap (cross-talk)
with each other. νI = 0 always. Scales are arbitrary.

that of the seeing to avoid the problem effectively. If the modulation frequency is
not high enough, residual cross-talk remains, as illustrated in Fig. 5.1: the spectral
content of I , Q, U , and V overlap and the demodulation process is unable to get rid
of contamination from other Stokes parameters coming from a (given) single reso-
lution element. Although Fig. 5.1 shows only the idealized amplitude spectrum, the
phase spectrum must also be taken into account. In fact, it may help in practice to
disentangle the information corresponding to the different Stokes parameters that
overlap in the amplitude spectrum.

To get a better grasp of the problem in the measurement, rather than in the fre-
quency, domain, consider the following example.‡ Imagine that we are simply
measuring Stokes I +V and I −V at two different times, and that spatial smearing
has already been corrected for. That is, our ideal polarimeter (a linear retarder plus
a linear analyzer with axis at 45◦ or 135◦ relative to the axes of the retarder) has
diattenuation vectors h(t1) = (0, 0, 1)T and h(t2) = (0, 0,−1)T. Equation (4.55)
then gives

Imeas(t1) = k

2

[
(Isun + δ Iseeing,1) + (Vsun + δVseeing,1)

]
,

Imeas(t2) = k

2

[
(Isun + δ Iseeing,2) − (Vsun + δVseeing,2)

]
,

(5.3)

where k stands for the gain of the detector, δ Iseeing,i ≡ δ Iseeing(ti ), and δVseeing,i

≡ δVseeing(ti ). Addition and subtraction of Eqs (5.3) yields the observed Stokes
parameters

Iobs = k Isun + k

2
(δ Iseeing − δV ′

seeing),

Vobs = kVsun + k

2
(δVseeing − δ I ′

seeing),

(5.4)

‡ Based on Collados (1999).
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where

δ Iseeing ≡ δ Iseeing,1 + δ Iseeing,2,

δVseeing ≡ δVseeing,1 + δVseeing,2,

δ I ′
seeing ≡ δ Iseeing,2 − δ Iseeing,1,

δV ′
seeing ≡ δVseeing,2 − δVseeing,1.

Equations (5.4) show how V−→I and I−→V cross-talk appears. If a typi-
cal value for the errors introduced by seeing are of the order δ Iseeing,i/Isun =
δVseeing,i/Vsun ≈ 10−2, the ratios between the two terms on the right-hand side
of Eqs (5.4) are

k(δ Iseeing − δV ′
seeing)

2k Isun
≈ 10−2,

k(δVseeing − δ I ′
seeing)

2kVsun
≈ 10−1,

(5.5)

since Vsun/Isun is of the order 10−1 for most solar cases. Therefore, an unacceptable
I −→ V cross-talk, an order of magnitude greater than δ Iseeing/Isun, is obtained.

Spatial modulation helps in getting rid of I−→V cross-talk. To illustrate this,
imagine that our Stokes V polarimeter now has a beam splitter or a double bire-
fringent plate as a linear analyzer. In such a case, I ± V can be measured at the
same time. According to the discussion in Section 4.7.1, at time t1 we have two
diattenuation vectors, h1(t1) = (0, 0, 1)T and h2(t1) = (0, 0,−1)T, so that

Iobs(t1) = Imeas,1(t1) + Imeas,2(t1) = k(Isun + δ Iseeing,1),

Vobs(t1) = Imeas,1(t1) − Imeas,2(t1) = k(Vsun + δVseeing,1).

(5.6)

Note that the cross-talk has now clearly disappeared.
So far we have been discussing I−→V contamination. Should we have con-

sidered measurements of I ± Q or I ± U , similar conclusions would have been
reached. I−→Q,U, V cross-talk is the most relevant since I > Q,U, V . More
elaborate calculations show that temporal modulation at video frame rates together
with spatial modulation with a beam splitter can keep V −→ (Q,U ) < 10−3 I
and (Q,U ) −→ V and (Q,U ) −→ (Q,U ) at even lower levels (Lites, 1987).
In summary, correction of seeing-induced polarization can be effected either with
very fast temporal modulation or with spatio–temporal modulation. Either way is
chosen according to the polarimeter design, depending on further requirements of
the observations such as spatial and/or spectral resolution.
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5.1.2 Instrumental polarization

Let us discuss now the important polarization effects produced by the telescope,
or, more generally, the image-forming system.

5.1.2.1 Telescope polarization

Telescope seeing (air turbulence) within the telescope tube can introduce similar
effects to those produced by the Earth’s atmosphere. On the assumption that these
effects are corrected for in the same way as atmospheric seeing, or, better still, that
turbulence is avoided by keeping the telescope tube under vacuum or by some other
means such as an open-air tube, the most important degrading effects introduced
by the image-forming system are due to oblique reflections on metallic surfaces
(i.e., mirrors) and imperfections and stresses in glass windows.

Metallic surfaces act both as partial polarizers (Section 4.6.3) and as retarders
(Section 4.6.4). The general Mueller matrix for reflection by a metallic mirror
can be found, for example, in Stenflo (1994). Different rays of the same colli-
mated beam reaching different parts of the mirror may suffer different modifica-
tions in the state of polarization of the beam. Nonetheless, those different rays
contribute coherently† to the final polarization signal. It can then be shown that
revolution symmetry makes the various contributions cancel out (Sánchez Almeida
and Martı́nez Pillet, 1992). The best solution is thus to use “polarization-free” tele-
scopes such as the Franco–Italian THEMIS,‡ in which the polarization analysis is
carried out just after reflection on revolution-symmetry mirrors. Other solar tele-
scopes have not been specifically designed for avoiding instrumental polarization.
Although most main and secondary mirrors have revolution symmetry, many have
flat mirrors such as coelostats or other beam-folding optics and even off-axis main
mirrors through the light path.

Windows are usually made of glass, i.e., a dielectric. For small incident an-
gles, the Mueller matrix for the transmitted radiation is diagonal and is thus of no
concern for the polarimetric analysis. However, mechanical tensions and stresses
may induce inhomogeneous birefringence, which makes such windows behave on
average as retarders.

Since oblique metallic surfaces, windows, and other optical imperfections are
present in polarization-free telescopes, calibration of the polarization properties of
the whole image-forming system is mandatory in all cases. One usually proceeds
by modeling the Mueller matrix MT of the system. This theoretical model depends
on several free parameters that are then fitted with specially designed observa-
tions that may need some additional polarizing optics. Note that among the free

† Coherent superposition of rays cannot be treated with the Mueller matrix formalism; the Jones matrix formal-
ism is used instead. See the comment in Section 3.4.

‡ Information on the telescope can be found in Mein and Rayrole (1985).
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Fig. 5.2. Daily variation of MT matrix elements for the VTT telescope on 1 July 1988 at
two wavelengths: 500 nm (solid line) and 1.56 µm (dotted line). Courtesy of M. Collados.

parameters one may find the date and time of observations. This is so because of
the varying orientation angles that the different optical elements may have in order
to point to the Sun. As an example, Fig. 5.2 shows the measured Mueller matrix
of the German Vacuum Tower Telescope (VTT)† through the day for a given date
and for two wavelengths, namely, 500 nm (solid lines) and 1.56 �m (dotted lines).
Each panel corresponds to one of the matrix elements of MT.

5.1.2.2 Spectrograph polarization

The polarization properties of gratings may be of importance for some observa-
tions, although for time-modulated signals they are not very much of a problem.
Gratings have different blaze distributions and transmittivities for light parallel or
perpendicular to the ruling (see Fig. 5.3). Moreover, they act as partial linear polar-
izers whose properties depend strongly on wavelength. For typical solar observa-
tions, in which the wavelength span is usually small and incidence is very close to

† Information on this telescope may be found in Schröter et al. (1985).
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λ

Fig. 5.3. Blaze distributions of a grating for light parallel (short-dashed line) and perpen-
dicular to the ruling (solid line). The long-dashed line represents the output degree of linear
polarization for a natural input. It changes from one state to the other as it goes through
zero. Adapted with permission from Gray, 1992.

the blaze angle (and thus blaze wavelength), the most important effect is a different
transmittivity for the orthogonally polarized states, which can be easily corrected.
In any case, calibration of the spectrograph effects can be included in the overall
calibration described above for the image-forming system.

5.1.2.3 Detector polarization

Apart from limiting the photometric accuracy, detectors can induce significant po-
larimetric problems if all four Stokes parameters are not measured on the same
resolution element. Two-dimensional quantum detectors such as charge coupled
devices (CCDs) require gain-table corrections in order to account for the different
sensitivities of the individual pixels. Flat-fielding accuracies are often of the or-
der of 10−2. Therefore, the degree of polarization suffers from exceedingly large
gain-table uncertainties. To better understand this effect, let us consider a simi-
lar example to that described in Section 5.1.1.‡ Imagine that we are measuring
I + V and I − V with two detectors or on different parts of a single detector. The
two measurements will be affected by gain factors k that differ by δk, the flat-field
accuracy:

Imeas,1 = k

2
(Isun + δ Iseeing + Vsun + δVseeing),

Imeas,2 = (k + δk)

2
(Isun + δ Iseeing − Vsun − δVseeing).

(5.7)

‡ This example is also taken from Collados (1999).
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Addition and subtraction of Imeas,1 and Imeas,2 give

Iobs =
(

k + δk

2

)
(Isun + δ Iseeing) − δk

2
(Vsun + δVseeing),

Vobs =
(

k + δk

2

)
(Vsun + δVseeing) − δk

2
(Isun + δ Iseeing).

(5.8)

The important cross-talk components are in the second terms on the right-hand side
of the equations. Again, since Vsun/Isun ≈ 10−1, the V−→I contamination is of
the acceptable order of 10−2 of δk/k, but the I−→V contamination is considerable
and must be avoided or, at least, mitigated. Spatial modulation alleviates seeing-
induced cross-talk but introduces gain-table uncertainties.

A possible solution that is used in practice (Elmore et al., 1992; Martı́nez Pillet
et al., 1999) comes from a mixed scheme in which spatial and temporal modu-
lation are performed. The first is employed in order to minimize seeing-induced
cross-talk and the second to minimize gain-table uncertainties. A very good and
didactic example of the usefulness of this mixed modulation scheme is pro-
vided by the method proposed by Semel et al. (1993; see also Donati et al., 1990
and Bianda et al., 1998), in which the two beams leaving a double birefringent plate
or a beam splitter are interchanged. Following our example, we would now have
four measurements similar in pairs to those of Eqs (5.7). The only difference is
that from the first to the second pair, the role of both detectors (or both parts of the
single detector) are interchanged. Therefore, accounting now for seeing-induced
effects,

Imeas,1(t1) = k

2

[
(Isun + δ Iseeing,1) + (Vsun + δVseeing,1)

]
,

Imeas,2(t1) = (k + δk)

2

[
(Isun + δ Iseeing,1) − (Vsun + δVseeing,1)

]
,

Imeas,1(t2) = k

2

[
(Isun + δ Iseeing,2) − (Vsun + δVseeing,2)

]
,

Imeas,2(t2) = (k + δk)

2

[
(Isun + δ Iseeing,2) + (Vsun + δVseeing,2)

]
.

(5.9)

Adding and subtracting the first and the third measurements on the one hand, the
second and the fourth measurements on the other, and averaging the results, one
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finally obtains

Iobs = (k + δk)

(
Isun + δ Iseeing

2

)
+ δkδVseeing

4
,

Vobs = (k + δk)

(
Vsun + δVseeing

2

)
+ δkδ Iseeing

4
,

(5.10)

where we have adopted the same conventions for notation as in Section 5.1.1. The
second terms on the right-hand sides of Eqs (5.10) are three and two orders of
magnitude less than gain-table uncertainties, respectively, and can be neglected.
Therefore, the degree of circular polarization turns out to be independent of the
flat-field, and cross-talk between Stokes I and Stokes V disappears. The errors
are only introduced by the residual perturbations arising from seeing if time mod-
ulation is not fast enough. A further increase in the signal-to-noise ratio (S/N)
of measurements can be achieved simply by using longer individual exposures or
by repeating them in cycles so that on-line averaging can be performed of those
measurements corresponding to the same state of the analyzer.

5.2 The polarization analysis system

The heart of polarimetric analysis is of course the polarimeter itself. If all environ-
mental polarization is corrected for then the final accuracy and S/N of the results is
based critically on polarimeter design. Depending on the available devices and on
the target of the observations, the Stokes analyzer can be devised so as to measure
two, three, or all four Stokes parameters. Nevertheless, we have come to appreci-
ate in this chapter that full Stokes polarimetry is necessary for properly correcting
environmental effects. Hence, we hereafter assume that we are dealing with po-
larimeters that measure all four Stokes parameters.

Let us go back to the fundamental equation (4.56) of polarization analysis.† This
equation may be termed the modulation equation and the set of n measurements,
Imeas, the modulation scheme of the system. According to Eq. (4.55), the modula-
tion matrix, O, is made up of the first rows of the analyzer Mueller matrix for each
of the measurement steps, namely,

O =




1 hT
1

1 hT
2

...
...

1 hT
n


 , (5.11)

where we have assumed M00 = 1, since it acts only as a scaling factor.

† The remaining part of this chapter is based on a paper by del Toro Iniesta and Collados (2000). I refer the
interested reader to that paper for the relevant references.
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As pointed out in Section 4.7, the problem is then reduced to inverting the mod-
ulation matrix. If n = 4, O has a unique inverse, D, the demodulation matrix. The
existence of D is ensured, for the modulation matrix is necessarily non-singular.
The linear equation system (4.56) is assumed to have a solution: all four input
Stokes parameters are measured. If instead n > 4 then an infinite number of ma-
trices D exists for which DO = 11 [i.e., there is an infinite number of solutions
for Eq. (4.56)]. At this point, the designer has to make a decision on which mod-
ulation scheme is more suited to the purposes of the polarimeter. That is, the
number, type, and extent of the individual exposures need to be chosen according
to the requirements for S/N and polarimetric accuracy which in turn depend on
other requirements such as temporal, spatial, and spectral resolution. We shall see
that optimization of matrices O and D is possible theoretically. This optimization
provides useful hints on practical design.

The S/N can be increased by averaging a number of independent determinations
of Iin.† Let us concentrate, then, on polarimetric accuracy and look for modulation
schemes that minimize the uncertainties, σi , in the determined Stokes parameters
(i = 1 for Iin, i = 2 for Qin, i = 3 for Uin, and i = 4 for Vin), due to the
ever-present intrinsic noise of the measurements.

Inversion of Eq. (4.56) provides

Iin = DImeas. (5.12)

The uncertainties, σi , are then given by

σ 2
i = σ 2

n∑
j=1

D2
i j , (5.13)

where we have assumed that every Imeas, j , j = 1, 2, . . . , n, has the same uncer-
tainty, σ , owing, for instance, to photon noise. The uncertainty in every Stokes
parameter is then given by the sum of squares of the corresponding row of the
demodulation matrix. The smaller σi , the better.

Equation (5.13) does not allow direct comparison between modulation schemes
using different numbers of measurements. One would expect that the larger n, the
smaller σi , but this is not clearly seen in the equation referred to. It is thus con-
venient to define an efficiency of the modulation scheme as the four-vector � of
components

ξi =
(

n
n∑

j=1

D2
i j

)−1/2

. (5.14)

† Note that we are using the suffix “in” instead of “sun” as before. Hence, we are implicitly admitting that
corrections for environmental polarization are not perfect.
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On average, the contribution of every individual measurement to the final uncer-
tainties should be σ̄ 2

i = nσ 2
i . Equations (5.13) and (5.14) then give

σ̄ 2
i = σ 2

ξ 2
i

. (5.15)

Equation (5.15) clearly indicates that two modulation schemes having the same
polarimetric efficiencies do indeed provide equal individual contributions to the
Stokes parameter uncertainties. That with the higher number of measurements
presents smaller uncertainties in the Stokes parameters. Optimization of the mod-
ulation scheme thus requires maximization of polarimetric efficiencies.

5.2.1 The optimum modulation matrix

The optimum modulation scheme has a modulation matrix, O, such that

A ≡ OTO = n




ξ 2
max,1 0 0 0
0 ξ 2

max,2 0 0
0 0 ξ 2

max,3 0
0 0 0 ξ 2

max,4


 , (5.16)

where the maximum efficiencies, ξmax,i , are given by

ξ 2
max,i =

∑n
j=1 O2

j i

n
. (5.17)

Moreover, it becomes clear that if the analyzer is ideal, that is, if h j = 1, ∀ j =
1, 2, . . . n (see Section 4.6.2) then Eq. (5.17) leads to

ξmax,1 = 1,
4∑

i=2

ξ 2
max,i = 1.

(5.18)

To demonstrate the result expressed by Eqs (5.16) and (5.17) let us maximize
the polarimetric efficiencies by minimizing the quantities

d2
i ≡

n∑
j=1

D2
i j . (5.19)

Since d2
i has no non-trivial minimum, let us search for minima subject to the con-

dition that the diagonal elements of DO are unity. In other words, let us seek the
minimum of the function

fi ≡ d2
i − x

(
n∑

j=1

Di j O ji − 1

)
, (5.20)
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where x is a Lagrange multiplier. Taking derivatives with respect to Di j , requiring
the term in parentheses to be zero, and remembering that the second derivatives are
always positive and equal to 2, the minimum of di (under that binding condition)
is found if

Di j = O ji∑n
j=1 O2

j i

, (5.21)

whence

d2
min,i = 1∑n

j=1 O2
j i

, (5.22)

which directly yields Eq. (5.17). But Eq. (5.21) does not give a proper demodula-
tion matrix unless

∑n
j=1 Di j O jk = δik , where δik is the Kronecker delta. This last

condition is fulfilled if and only if
∑n

j=1 O ji O jk = Aik = Aiiδik , i.e., if and only
if Eq. (5.16) holds.

Of course, not every modulation scheme can be optimal. An example of such
an optimal scheme is that with a modulation matrix having its last three columns
with elements of one and only one magnitude, namely, q , u, and v, and the two
possibilities for sign appear at least twice (only twice if n = 4). Also, every
appearance must be accompanied (in a given row) by one of the signed values of
the other two. For instance, when n = 4,

O =




1 q u v

1 q −u −v

1 −q u −v

1 −q −u v


 , (5.23)

or any equivalent matrix. For this modulation matrix, matrix A becomes

A = n diag(1, q2, u2, v2). (5.24)

As one may be interested in Q, U , and V being obtained with the same efficiency,
q, u, and v should be all equal to 1/

√
3 since, according to the second of Eqs (5.18),

q2 + u2 + v2 = 1.
Another example fulfilling Eqs (5.16) and (5.17) is that of a modulation scheme

with which Q, U , and V are measured independently, that is, a scheme for which
the modulation matrix reads

O =




1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0
1 0 0 1
1 0 0 −1




. (5.25)
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In this case,

A = 6 diag(1, 1/3, 1/3, 1/3). (5.26)

5.2.2 The optimum demodulation matrix

Optimum modulation schemes may not be attainable in practice. On the one hand,
most of the block elements of the analyzer may not behave ideally; on the other,
measurements generally require the finite integration of non-linear functions. In
both cases, the diattenuation vectors h j , j = 1, 2, . . . n are no longer unit vectors.
The relevant problem is now the following. Let us consider a given (non-ideal)
modulation matrix, O, and let us look for the best demodulation matrix, D, that
maximizes the efficiencies.

Following the philosophy of Section 5.2.1, we shall now search for the minimum
of

fi ≡ d2
i −

4∑
k=1

xik

(
n∑

j=1

Di j O jk − δik

)
, (5.27)

where, again, xik are Lagrange multipliers. Carrying out similar calculations as for
Eq. (5.20), one finds that the optimum demodulation matrix is given by

Dopt = (OTO)−1OT = A−1OT, (5.28)

and that the optimum efficiencies are given by

ξ 2
opt,i = 1

nBii
, (5.29)

where Bii are the diagonal elements of B ≡ A−1.
It is to be observed that the binding condition in Eq. (5.27) is more restrictive

than that of Eq. (5.20), the former being a particular case of the latter. Therefore,
ξ 2

opt,i ≤ ξ 2
max,i or,

1

Bii
≤

n∑
j=1

O2
j i = Aii . (5.30)

Equation (5.30) can then be read as the greater the root mean square of the column
elements of the modulation matrix, the greater the polarimetric efficiency attain-
able by the modulation scheme.

Further reasoning leads to the conclusion that the equality sign holds for
Eq. (5.30) only when matrix A is diagonal; hence, the more diagonal matrix A
is, the closer the polarimetric efficiency will be to maximum. In other words, if two
given modulation schemes have approximately the same Aii elements, the one with
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Fig. 5.4. Block diagram of ZIMPOL.

the relatively smaller non-diagonal elements is the more efficient. An application
of these results to practical design is presented in Section 5.4.

5.3 Some solar Stokes polarimeters

Let us comment a little on real polarization analysis systems that are used in prac-
tice, namely, ZIMPOL (for Zürich IMaging POLarimeter; Stenflo et al., 1992),
ASP (for Advanced Stokes Polarimeter; Elmore et al., 1992), TIP and LPSP (for
Tenerife Infrared Polarimeter and La Palma Stokes Polarimeter; Martı́nez Pillet
et al., 1999). We outline here their main polarizing properties such as their block
elements and their modulation matrices and efficiencies. We shall not enter into
considerations of their performance. As a matter of fact, most of their differ-
ences stem from the various purposes they were designed for. Moreover, some
may have evolved and others may have updated some block elements. Some of
them may pursue ultimate polarimetric accuracy by perhaps sacrificing spatial res-
olution, whereas others may seek a balance between both, etc. Such appraisals of
the possible aims of polarimeters is left to the interested reader.

5.3.1 ZIMPOL

The Zürich Imaging Polarimeter consists of two piezo-elastic modulators followed
by a super-achromatic quarter-wave plate and a Glan polarizer (see Fig. 5.4). The
piezo-elastic crystals modulate the diattenuation vector with oscillating retardances
δ(t) + π/4 and δ(t) − π/4 of frequency 50 kHz and are oriented at 45◦ and 0◦

relative to the positive Stokes Q direction (the positive X direction in the discussion
in Section 3.3). The fast axis of the quarter-wave plate is at 0◦ too and the optical
axis of the polarizer is at 22.5◦. After noticing the fast modulation frequencies,
the reader may already have guessed that this polarimeter was devised to carry out
pure time modulation.

A frequency of 50 kHz means ideal sampling intervals of 20 �s. These very
short exposure times are impossible for conventional CCD cameras with their long
read-out time (rows are read by shifting the charges through all the electronic
wells). Moreover, if all polarimetric measurements are to be performed in the same
pixel, an alternative detection system has to be conceived. Stenflo and coworkers
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Fig. 5.5. Detection system for ZIMPOL. Three out of every four pixels in a row are
masked. Charge is shifted forward by one pixel three times per cycle. In the last step,
charge is shifted backwards by three pixels. I j

i means I j
meas,i , according to the convention

mentioned in the text.

have succeeded in tailoring a CCD chip in a very clever way that is illustrated in
Fig. 5.5. Imagine that the chip has n pixels per row. Three such pixels out of
every four are masked so that they are not illuminated at any time. During the
sampling interval, τ , every illuminated pixel j ( j = 1, 2, . . . , n/4) accumulates a
given polarimetric signal, I j

meas,i (i = 1, 2, 3, 4), and a very short time (of order
0.3 �s) is allowed between sampling steps to shift the charges to the masked pixels
in one direction (say forwards) but without reading the chip. In the last step of
the cycle, charge is moved backwards. The three forward shifts are in steps of one
pixel while the backward shift is three pixels in length, and all of them are carried
out in synchrony with the piezo-elastic modulators. In this way, the cycle can be
repeated until the desired S/N is achieved when the detector is immediately read
out. Evidently, the backward shift implies that every pixel is exposed for 0.3 �s
with an erroneous polarimetric state. This effect introduces very small errors that
are nonetheless corrected by calibration. In order not to waste three-quarters of
the available photons, the chip is covered with a micro-lens array that concentrates
light onto the illuminated pixel, leaving the masked pixels shadowed.

A modulation matrix of ZIMPOL is

OZIMPOL =




1 0.39 −0.66 0.26
1 −0.01 0 −0.40
1 0.39 0.66 0.26
1 −0.77 0 0.92


 , (5.31)
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Fig. 5.6. Block diagram for ASP.

its polarimetric efficiency vector is

ξ = (0.83, 0.39, 0.47, 0.38)T, (5.32)

and the total efficiency for the polarization parameters is√
ξ 2

2 + ξ 2
3 + ξ 2

4 = 0.72. (5.33)

5.3.2 ASP

Besides some feed and beam steering optics, the Advanced Stokes Polarimeter
consists of a rotating retarder of retardance π/2 at 740 nm, 107.28◦ at 630 nm,
and 130.68◦ at 517 nm, an achromatic half-wave plate, and a beam splitter (see
Fig. 5.6). The rotation of the retarder is performed at 3.75 Hz and the synchro-
nized detection is made with specially tailored 12 bit CCD cameras working at
video rates (60 Hz). The two output beams are measured so that a spatio–temporal
modulation is carried out in the end.

The modulation cycle is such that eight polarimetric measurements are used in
determining all four Stokes parameters. Hence, two polarimetric cycles are per-
formed per second. The modulation matrix for each detector is

OASP =




1 0.77 0.41 −0.36
1 −0.06 0.41 −0.86
1 −0.06 −0.41 −0.86
1 0.77 −0.41 −0.36
1 0.77 0.41 0.36
1 −0.06 0.41 0.86
1 −0.06 −0.41 0.86
1 0.77 −0.41 0.36




, (5.34)

the polarimetric efficiency vector is

ξASP = (0.76, 0.42, 0.41, 0.66), (5.35)
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Fig. 5.7. Block diagram for TIP and LPSP.

and the total efficiency for the polarization parameters,√
ξ 2

2 + ξ 2
3 + ξ 2

4 = 0.88. (5.36)

5.3.3 TIP and LPSP

These two polarimeters are very similar. Their main difference is the wavelengths
at which they are designed to observe: TIP is characterized for the near infrared
(around 1.56 �m) and LPSP for visible wavelengths (around 630 nm). This dif-
ference led to small changes in the optical design and in the modulation cycle but
both systems can be conceptually considered the same polarimeter. A diagram il-
lustrating the analyzer can be seen in Fig. 5.7. It consists of two ferroelectric liquid
crystals and a beam splitter. Spatio–temporal modulation is performed.

For both polarimeters, the (fixed) retardances of the two liquid crystals are close
to a half wave and close to a quarter wave, respectively, at the nominal wavelengths.
The difference in orientation angles of the optical axis between the two states of
both crystals is 45◦ and their relative orientation is left as a free parameter that can
be set by computer control, as can the exposure time of the CCD cameras, which
are the same as those of the ASP. The orientation angles and differences between
states are temperature sensitive so they are thermalized to the required tempera-
tures. In the standard modulation scheme both use four polarimetric measurements
of exposure time 16 ms for LPSP (15 Hz modulation frequency) and 50 ms (2 Hz
modulation frequency) for TIP.

A modulation matrix for TIP is

OTIP =




1 0.47 −0.68 0.48
1 −0.91 −0.19 −0.13
1 −0.11 0.57 0.72
1 0.68 0.27 −0.58


 , (5.37)
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the corresponding efficiency vector is

ξTIP = (0.97, 0.61, 0.47, 0.51), (5.38)

and the total efficiency for the polarization parameters is√
ξ 2

2 + ξ 2
3 + ξ 2

4 = 0.92. (5.39)

5.4 A practical discussion of polarimetric efficiencies

To illustrate the usefulness in practical design of the results obtained in
Sections 5.2.1 and 5.2.2, let us digress a little on the actual efficiencies of the
above polarimeters, their maximum attainable efficiencies and their possible im-
provements as far as polarimetric accuracy is concerned. It is important to note
that the improvements we suggest in what follows may or may not be applied in
reality, since some of them could imply modifications of some of the physical block
components. These suggestions are made only to stress the importance of consid-
ering polarimetric accuracy from the very first steps in design. Deviations from
optimum values may result from the compromises to which every polarimeter is
subject.

According to inequality (5.30) the maximum attainable efficiencies of the three
polarimeters are given by

ξmax,ZIMPOL = (1.000, 0.474, 0.467, 0.534),

ξmax,ASP = (1.000, 0.546, 0.410, 0.659),

ξmax,TIP = (1.000, 0.617, 0.473, 0.525).

(5.40)

A comparison of Eqs (5.40) with Eqs (5.32), (5.35), and (5.38) readily draws
attention to four relevant features. First, all three polarimeters behave ideally for
Stokes I and can reach unit efficiency for the total intensity. Second, TIP can
(and in practice does) have higher efficiencies for Stokes Q and U than ASP and
ZIMPOL. Third, ASP can (and in practice does) have higher polarimetric efficiency
for Stokes V than ZIMPOL and TIP. And fourth, ZIMPOL and TIP can reach
almost the same efficiency for Stokes U .

The actual value of the efficiencies for Stokes I are of the same order as the rela-
tive weight of non-diagonal to diagonal elements in the first column of their A ma-
trices: 0.260, 0.355, 0.127. The same applies to the differences between ξ2,ZIMPOL

and ξ2,TIP; the relative weights of non-diagonal elements are 0.42, 0.07. This is in
agreement with the second rule derived in Section 5.2.2: the more diagonal matrix
A is, the closer the actual efficiency is to maximum.
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According to the first rule of Section 5.2.2, the efficiencies could be raised by
increasing the magnitude of the vector columns of matrix O. Let us find simple
ways (feasible or otherwise in practice) of achieving this goal for ZIMPOL and
ASP.

Imagine the ZIMPOL modulation cycle to comprise eight measurements: the
four actual ones plus four others so that its modulation matrix were to become

OZIMPOL,new =




1 0.39 −0.66 0.26
1 −0.01 0 −0.40
1 0.39 0.66 0.26
1 −0.77 0 0.92
1 −0.39 −0.66 −0.26
1 0.01 0 0.40
1 −0.39 0.66 −0.26
1 0.77 0 −0.92




. (5.41)

The new polarimetric efficiency vector would then be

ξZIMPOL,new = (1.00, 0.41, 0.47, 0.46). (5.42)

Imagine ASP to have the slightly different modulation matrix

OASP,new =




1 0.77 0.41 −0.36
1 −0.06 0.41 −0.86
1 −0.06 −0.41 0.86
1 0.77 −0.41 0.36
1 −0.77 0.41 0.36
1 0.06 0.41 0.86
1 0.06 −0.41 −0.86
1 −0.77 −0.41 −0.36




. (5.43)

The new efficiencies would then be given by

ξASP,new = (1.00, 0.55, 0.41, 0.66). (5.44)

The new polarimetric efficiencies turn out to be higher than the actual ones be-
cause the new A matrices are more diagonal. As a matter of fact, in the case of
ASP, the new A matrix is exactly diagonal and the efficiencies reach their maxima.
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6

Absorption and dispersion

“El clero era absorbente”. Sobre todo Don Fermı́n habı́a sido un poco jesuita.
—Leopoldo Alas, Cları́n, 1885.

‘The clergy were like a sponge.’ And what was more, Don Fermin had once been something
of a Jesuit.

So far we have avoided detailed discussion about two physical phenomena that
are crucial in the context of this book and for any understanding of the interac-
tion between matter and radiation in general. These two phenomena are absorption
and dispersion, that is, the removal of energy from the electromagnetic field by
matter and the dephasing of the electric field components as light streams through
the medium. Although we have barely mentioned the existence of these effects,
we shall need a deeper insight into both of them. We shall see that retardance,
birefringence, and absorption properties of polarization systems, assumed in the
preceding sections, are based on these phenomena, whose wavelength dependence
is understood in terms of the wavelength dependence of the dielectric permittiv-
ity and, hence, of the refractive index of the medium. By studying absorption and
dispersion we are producing the necessary bricks with which to build a theory of
radiative energy transfer which will be discussed in following chapters. We shall
continue to assume unit isotropic magnetic permeability of µ = 1 for the medium.

Certainly, a full account of absorption and dispersion processes can be car-
ried out only within the framework of quantum mechanics. Nonetheless, a semi-
classical approach turns out to be adequate for grasping the underlying physics.
This means that we shall stick to classical physics as much as possible, but that we
shall resort occasionally to concepts or results from quantum mechanics.
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6.1 Light propagation through low-density,
weakly conducting media

From Maxwell’s equations and their related constitutive (or material) equations,
the only way for matter to draw energy from the electromagnetic field is through
the appearance of Joule currents ( j = σE), which dissipate radiative energy in the
form of heat. Note that a conductivity tensor, σ, has been introduced because the
medium is generally anisotropic.

Strictly speaking, the wave equation (2.1) and its analogue for anisotropic media
[Eq. (4.5)] have a real coefficient ε/c2 = n2/c2 only for non-conducting media
(σ = 0), as we are about to see. When the electrical conductivity is non-negligible,
as is the case for a stellar plasma, the wave equation becomes†

∇2 Eα − εα

c2
Ëα − 4πσα

c2
Ėα = 0, (6.1)

where α = 1, 2, 3 applies to the three principal directions (ê1, ê2, ê3) of the aniso-
tropic medium.

Now, Fourier transforming Eq. (6.1) twice, first in space and then in time, gives‡

−k2
α Ēα + εαω

2

c2
Ēα + i

4πσαω

c2
Ēα = 0, (6.2)

where Ēα denotes the double Fourier transform of Eα. Since Eq. (6.2) must be
valid for every Ēα, we conclude that the square wave number must be

k2
α = ω2

c2

(
εα + i

4πσα

ω

)
. (6.3)

Equation (6.3) is known as the dispersion relation of the wave and is to be com-
pared with its analogue for a non-conducting medium,

k2
α = ω2

c2
εα. (6.4)

Thus, a complex wave number makes its appearance simply because of the pres-
ence of conductive properties in the medium.

The simplest solution of Eq. (6.1) is a purely monochromatic, time-harmonic
plane wave of components

Eα = aα e
i
[
kα(r.t̂)−ωt+�ωα

]
(6.5)

that are identical to those of Eq. (2.9), except that now the vector wave number
is complex, and that we specify here the ray direction, t̂, instead of the wavefront

† We assume that the conductivity tensor is diagonal when the dielectric tensor is.
‡ Note that the definition of Fourier transform used to obtain Eq. (6.2) is F [ f ] ≡ ∫∞

−∞ f (t) eiωt dt , consistent
with our convention of considering e−iωt as the elementary harmonic function.
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normal, ŝ. This result implies that everything, including the generalization to poly-
chromatic light, stays formally the same as in the non-conducting case but with a
complex refractive index,

n2
α ≡ εα + i

4πσα

ω
. (6.6)

If we write

nα = 1 + δα + iκα (6.7)

and assume that both δα and κα are real and much less than unity, then the dielectric
and conductivity tensor components can safely be regarded as if they were real.†
This assumption seems reasonable for a stellar atmosphere, where, on the one hand,
densities are low enough for the real part of the refractive index to barely differ
from the in vacuo unit value, and, on the other hand, although conductivity is non-
negligible, its value is sufficiently small. With this assumption, neglecting second-
order terms,

n2
α ) 1 + 2(δα + iκα). (6.8)

The components of a quasi-monochromatic plane wave traveling through the
anisotropic medium become

Eα(t) =
{
Eα(t) e− ω

c κα(r.t̂)ei
[
ω
c (1+δα)(r.t̂)+�ωα(t)

]}
e−iωt . (6.9)

The imaginary part of the refractive index clearly produces a real decay factor
that makes the amplitude of the wave decrease exponentially, thus accounting for
electromagnetic energy removal. The real part of nα takes care of shifting the phase
across the ray path from its original value, �ωα.

If we do not consider these extinction and phase factors to be implicitly included
in Eq. (3.6), then the coherency matrix of the light beam should be modified. In
particular, if the ray direction coincides with one of the principal directions of
the medium, say ê3, the diagonal elements of C are those of the non-conducting
medium multiplied by

e− 1
2
ω
c (2κ1+2κ2)(r.t̂), (6.10)

and the non-diagonal elements of C are those of the non-conducting medium mul-
tiplied by

e− 1
2
ω
c (2κ1+2κ2)(r.t̂)e

i
2
ω
c (2δ1−2δ2)(r.t̂), (6.11)

† εα and σα can indeed be complex for some media and frequencies.
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and its complex conjugate, respectively. That is, matrix C of Eq. (3.11) becomes

C = e− 1
2
ω
c (2κ1+2κ2) (r.t̂ )

(
〈E1(t)〉2 〈E1(t)E2(t)e

i
2υ〉

〈E1(t)E2(t)e− i
2υ〉 〈E2(t)〉2

)
, (6.12)

where

υ ≡
[ω

c
(2δ1 − 2δ2)(r . t̂) + (2�ω 1 − 2�ω 2)

]
. (6.13)

The coefficient

χα ≡ 2ω

c
κα = 4π

λ
κα (6.14)

is known as the absorption coefficient for light polarized in the α direction. The
coefficient

χ̃α ≡ 2ω

c
δα = 4π

λ
δα (6.15)

is known as the dispersion coefficient for light polarized in the α direction. It should
be observed that polarization in the α direction means elliptical polarization in
general, for the principal directions can be marked by complex vectors such as
those in Section 3.6.

In summary, we may say that a stellar plasma is able to absorb radiative en-
ergy, because it is a conducting medium, in very much the same way as metals
do. Furthermore, the negligible average charge density prevailing in the plasma is
analogous to the absence of free charges in metals. This last property can be shown
to be a direct consequence of Maxwell’s equations.

From the exponential decay factor, we see that the intensity of the α component
of the electric field decreases to a value 1/e smaller than the original intensity over
a length known as the mean free path of light polarized in the α direction,

 α ≡ 1

χα

= λ

4πκα
. (6.16)

For solar atmospheres and visible wavelengths, the evaluation of the absorption
coefficient gives a mean free path for photons of the order of 100 km, which in turn
gives an order of magnitude of 4 × 10−13 for the imaginary part of the refractive
index. Such a value fully justifies the above assumption of small κα and, on the
other hand, is to be compared to that of metals in the laboratory, for which κα can
be of the order of 103: in metals, the penetration depth of photons is very short;
in fact, a perfect conductor (σα−→∞) has  α = 0, and hence all the incident
electromagnetic energy is reflected and cannot be transmitted through the medium.

Two final remarks are in order at this point. First, we have been assuming in
this section that the medium is anisotropic and that in the frame of principal direc-
tions both the permittivity tensor, εε, and the conductivity tensor, σ, are diagonal.
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Consequently, the refractive index, and the absorption and dispersion coefficients
depend on the direction of propagation. For many astrophysical applications these
conditions are too general and one can safely assume that the plasma has isotropic
dielectric and conductive properties so that a single (complex) refractive index and
single absorption and dispersion coefficients provide a coherent picture of the inter-
action between matter and radiation. Second, we have been dealing with dielectric
and conductivity components without taking into consideration their wavelength
dependence. This is a final ingredient, which is discussed in the following section.

6.2 Absorption and dispersion profiles

The relationship (4.2) between D and E implicitly regards the interaction between
radiation and matter as though the electric field produces at every point in the
medium displacements that have components proportional to the components of E
in the frame of principal directions. After the discussion of the preceding section,
let us replace εε by εε + i(4π/ω)σ. If the medium is assumed to be made of atoms,
i.e., negative electrons surrounding positive nuclei, the individual displacements
can be thought of as the creation of electric dipoles,

p = −e0r, (6.17)

where −e0 is the charge of the electron and r the vector position of the electron
motion induced by the external field. If N is the number volume density of such
dipoles, the electric polarization vector,

P = −Ne0r, (6.18)

represents the total effect per unit volume.
The overall electric displacement, D, can be written as

D = E + 4πP, (6.19)

where the factor 4π accounts for all possible directions of impinging radiation.
Hence, D depends on the vector position of the electrons through

D = E − 4πNe0r. (6.20)

Calculation of the individual displacements can be carried out classically through
the Lorentz electron theory.† In this phenomenological theory, the electron is seen
as a superposition of classical oscillators,

r(t) = d(t) eiωt , (6.21)

† Further generalizations resulting from the quantum theory are also needed and will be introduced later.
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where now d is the time-dependent, complex amplitude of the motion. The oscilla-
tors are excited by the force associated with the external electric field,

Fe(t) = −e0E(t),

where E(t) is given by Eq. (6.9). The oscillators are restored by a quasi-elastic
force, which binds them in an equilibrium position,

Fr(t) = −qr(t),

and they are damped by a resisting force,

Fd(t) = −mγγṙ(t),

where m is the rest mass of the electron. The damping force is indispensable in
accounting for dissipative effects. Among these effects, one can enumerate absorp-
tion, which supplies heat (kinetic energy) to the particles, electromagnetic wave
emission by the oscillating charges that carry energy away, scattering of photons
in directions other than the original, and inelastic collisions between the absorbers
and other particles in the medium.‡

Note that a “polychromatic” oscillator has been assumed because the exciting
electric field is also polychromatic. The mathematical expression of Eq. (6.21) is
analogous to, and in fact has the same justification as, Eq. (3.6) for the quasi-
monochromatic beam of light. Most textbooks use a monochromatic approach in-
stead.

Let us choose the system of complex unit vectors {ê+1, ê0, ê−1} as the principal
reference frame, so that

ê±1 ≡ 1√
2
(ê1 ± iê2)

ê0 ≡ ê3.

(6.22)

From a classical point of view, the choice of such a reference frame can be inter-
preted as the decomposition of the electron oscillation into a linear combination of
three oscillators: one linear oscillator along ê0 and two circular oscillators: one re-
volving clockwise around ê0 (as seen through −ê0; i.e., right-handed), correspond-
ing to ê−1, and another revolving counter-clockwise (i.e., left-handed), correspond-
ing to ê+1. From a quantum-mechanical point of view, this system is linked to the
absorption and emission of photons whose state is a linear combination of the only
three pure states characterized by the third component of their angular momenta in
the atomic reference system, m j = +1, 0,−1. These three pure quantum states are

‡ The interested reader is referred to classical textbooks on stellar atmospheres, e.g., Mihalas (1978) or Gray
(1992), to retrieve the means for actual calculation of absorption and damping coefficients.
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indeed linked to the three totally polarized states (left-handed circular, linear, and
right-handed circular).

Newton’s second law applied to the motion of the electron gives, for each of the
three components rα, α = +1, 0,−1,

mr̈α(t) = −e0 Eα(t) − qαrα(t) − mγαṙα(t), (6.23)

where we have again made the assumption that both the q and γγ tensors are diago-
nal in the principal reference frame.

Fourier transforming Eq. (6.23) in time we obtain†

d̄α = −e0

m

Āα

(qα/m) − ω2 − iωγα
, (6.24)

where d̄α and Āα represent the Fourier transforms of dα(t) and Aα(t), the latter
being the time-dependent complex amplitude of the electric field of Eq. (6.9); i.e.,

Eα(t) ≡ Aα(t) e−iωt .

Since the proportionality factor between d̄α and Āα is independent of time, it is
readily seen that

dα(t) = −e0

m

Aα(t)

(qα/m) − ω2 − iωγα
. (6.25)

The term qα/m in the above equation is identified as a square resonant fre-
quency, ω2

0,α, at which, in the absence of damping, the individual displacements
behave as

lim
ω→ω0,α
ω<ω0,α

dα = −∞

and
lim

ω→ω0,α
ω>ω0,α

dα = +∞.

Certainly, the presence of damping eliminates the singularity.
Since (ω0,α − ω)/ω � 1 for quasi-monochromatic light (we are dealing with

frequencies close to the resonant frequency), the difference (ω2
0,α − ω2) can be

approximated to first order by 2ω(ω0,α − ω). Writing further !α ≡ γα/4π , the
individual displacement components can be recast in the form

rα(t) ) −e0

8π2mν

Eα(t)

ν0,α − ν − i!α

(6.26)

and are seen to be proportional to the principal components of the exciting elec-
tric field. This result is consistent with the proportionality between the principal

† See footnote ‡ on page 88.
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electric displacement and electric field components. In fact, Eq. (6.20) can now be
written as

Dα =
(

1 + Ne2
0

2πmν

ν0,α − ν + i!α

(ν0,α − ν)2 + !2
α

)
Eα. (6.27)

Now, the coefficient of proportionality between Dα and Eα is for sure the square
refractive index,

n2
α = 1 + Ne2

0

2πmν

ν0,α − ν + i!α

(ν0,α − ν)2 + !2
α

. (6.28)

After eliminating n2
α from Eqs (6.8) and (6.28) and identifying the real and imagi-

nary parts, we finally get the following real expressions for δα and κα:

δα = Ne2
0

4πmν

ν0,α − ν

(ν0,α − ν)2 + !2
α

,

κα = Ne2
0

4πmν

!α

(ν0,α − ν)2 + !2
α

.

(6.29)

As discussed in Section 6.1, κα is responsible for the absorption and δα for the
dispersion. The absorption coefficient then has the expression

χα(ν) = Nπe2
0

mc

!α/π

(ν0,α − ν)2 + !2
α

≡ Nπe2
0

mc
φα(ν), (6.30)

where the second factor on the right-hand side is a Lorentzian profile, φα(ν), nor-
malized to unit area (see Fig. 6.1); i.e.,∫ +∞

−∞
χα(ν)dν = Nπe2

0

mc

∫ +∞

−∞
φα(ν)dν = Nπe2

0

mc
. (6.31)

The dispersion coefficient is expressed as

χ̃α(ν) = Nπe2
0

mc

1

π

ν0,α − ν

(ν0,α − ν)2 + !2
α

≡ Nπe2
0

mc
ψα(ν), (6.32)

where the second factor on the right-hand side is a dispersion profile, ψα(ν), whose
antisymmetric shape is also illustrated in Fig. 6.1. Obviously, the integral of this
profile over the entire spectrum is zero. For historical reasons, some texts speak
of “anomalous” dispersion profiles, so that a “normal” dispersion profile would
be that with a singularity at the resonant frequency. We have already commented
that this “normal” dispersion can only take place in the absence of the otherwise
unavoidable damping.

One can clearly see in Eqs (6.30) and (6.32) that, if the resonant frequencies and
damping components are all three equal, the medium can be considered isotropic.
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ν ν ν ν

νν
φ ψ

Fig. 6.1. Normalized absorption and dispersion profiles. Frequencies are in units of the
Doppler width of the line (see Section 6.4). The damping coefficient is 0.05 in such units.

This is usually assumed for most cases of interest, and then the stellar atmosphere
is characterized by a single index of refraction. The more general case has been dis-
cussed in here to stress first that isotropy is indeed an assumption (some mechanism
might produce effects classically interpretable as refractive index anisotropies),
and second that the presence of a magnetic field in the atmosphere does induce
an anisotropy (a preferential direction), even when the damping components can
be assumed to be isotropic (!α = !, ∀ α = 1, 2, 3).

Although fairly simple, it may be helpful to observe the slight formal changes
that appear in the normalized absorption and dispersion profiles when they are con-
sidered as wavelength distributions instead of frequency distributions. Considering
λ as the integration variable and assuming that λ−λ0,α � λ0,α (as it is in practice),
then

φα(λ) = 1

π

!αλ
2
0,α/c

(λ − λ0,α)2 + (
!αλ

2
0,α/c

)2 (6.33)

and

ψα(λ) = 1

π

λ − λ0,α

(λ − λ0,α)2 + (
!αλ

2
0,α/c

)2 . (6.34)

6.3 A correction from quantum mechanics

Although just a single resonant frequency has been dealt with, it is evident that
the medium can have as many resonances as those of its constituent atoms and
molecules. These resonances may correspond to the frequencies needed to pro-
duce atomic transitions between bound electronic levels so that spectral lines are
formed, or bound–free transitions, as in ionization or recombination processes, and
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free–free transitions (zero resonant frequency) so that continuous absorption takes
place. Studying separately those processes giving rise to such resonances, we shall
then model the whole spectrum by simply adding the results. Under the assumption
of negligible anisotropies of the medium for continuum radiation – a likely approx-
imation for sun-like atmospheres† – those absorption processes corresponding to
the formation of the continuous spectrum have absorption and dispersion profiles
independent of direction; that is,

χcont(ν) = χcont,α(ν), ∀ α = +1, 0,−1 (6.35)

and

χ̃cont(ν) = χ̃cont,α(ν), ∀ α = +1, 0,−1. (6.36)

Note that if Eqs (6.35) and (6.36) apply, continuum radiation cannot change its
state of polarization after absorption and dispersion. Since the second factor in
expression (6.11) is unity for continuum radiation, the output coherency matrix is
proportional to the input coherency matrix:

C′′
cont = e−χcont r.t̂ Ccont. (6.37)

Thus, all four Stokes parameters are multiplied by the same factor:

I′′
cont = e−χcont r.t̂ Icont. (6.38)

Therefore, if continuum radiation is unpolarized on input it then remains unpolar-
ized on output. It is important to note that, within the limited range of frequencies
of a given spectral line, the continuous absorption and dispersion profiles stay es-
sentially constant, as can easily be deduced from their definitions. Hence, we can
drop the explicit dependence on frequency and write χcont and χ̃cont.

Let us concentrate on spectral line formation, that is, on those processes produc-
ing transitions between two bound electronic states or between a bound state and
the continuum. As a result of the wavelength dependence of the absorption pro-
cesses, a spectral line has been formed for each polarization state in the principal
directions of the medium whose shapes are given by the absorption profiles χα(ν),
α = +1, 0,−1. The absorption profiles account for the drawing of electromag-
netic energy by the medium. In their turn, dispersion profiles explain the change in
phase undergone by light after streaming through the medium. These results have
been derived from the simple phenomenological theory of Lorentz. As a matter
of fact, Lorentz’s results are exact for electric dipole transitions when compared
with more rigorous quantum-mechanical calculations, except for the frequency-
integrated strength of the profiles [Eq. (6.31)]. The introduction is necessary of a

† We are in fact neglecting scattering polarization, which is observed close to the solar limb.
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factor f , called the oscillator strength, which is proportional to the square modulus
of the dipole matrix element between the lower and the upper levels involved in the
transition. After this correction, the absorption and dispersion profiles become

χα(ν) = Nπe2
0 f

mc
φα(ν) (6.39)

and

χ̃α(ν) = Nπe2
0 f

mc
ψα(ν). (6.40)

6.4 Accounting for thermal motions in the medium

So far, we have implicitly assumed that material atoms and ions are at rest. Because
of thermal agitation, however, even if the bulk or mean velocity in the direction
of propagation (along the line of sight) is zero, every atom will have a non-zero
velocity component. Let us assume that the distribution of velocities is Maxwellian,
so that we shall have a number of ions with velocities in the vicinity of v given by

N (v) = N√
πvD

e−(v2/v2
D), (6.41)

whose root-mean-square width or, Doppler width, vD, is related to the temperature,
T , of the medium by

vD ≡
√

2kT

m
+ ξ 2

mic, (6.42)

where k is the Boltzmann constant and m the rest mass of the atom. We have
introduced in Eq. (6.42) the ad hoc parameter ξmic, or microturbulence velocity, that
is often used in astrophysics to account for those motions on smaller scales than the
mean free path of photons which are not included in the Doppler width of the line.
This parameter can simply be ignored for non-astrophysical applications. Being
dependent on the mass of the absorber, the Doppler width is indeed a characteristic
of each ionic species. Spectral lines of different atoms obviously have different
Doppler velocities.

As a consequence of the motion, the atom “sees” the photons shifted in fre-
quency because of the Doppler effect. The distribution of velocities can then be
translated into a frequency distribution:

N (ν) = N√
π�νD

e−
(
�ν2/�ν2

D

)
≡ N p(ν), (6.43)

where

v = �ν c

ν0,α
= (ν0,α − ν)c

ν0,α
, (6.44)
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in conformance with the astrophysical convention that redshifts correspond to pos-
itive velocities, and

vD = �νD c

ν0,α
. (6.45)

Note that the distribution p(ν) is defined to have unit area so that the total popula-
tion of absorbers is still N .

We must now take into account that the normalized absorption and dispersion
profiles φα(ν) and ψα(ν) of Eqs (6.39) and (6.40) were obtained for a set of ab-
sorbers with a distribution of frequency shifts equal to the Dirac δ(ν) distribution,
i.e., for a zero distribution of velocities. If absorption is a linear invariant against
translations of the variable, continuous process, system theory clearly tells us that
the normalized absorption and dispersion profiles for a distribution of frequency
shifts, p(ν), are the convolutions of φα(ν) and ψα(ν) with p(ν):

p(ν) ∗ φα(ν) and p(ν) ∗ ψα(ν).

Alternatively, the distribution of velocities can be described by means of wave-
length, rather than frequency, shifts. It is easily found that

N (λ) = N√
π�λD

e−(�λ2/�λ2
D) ≡ N p(λ), (6.46)

where

v = �λ c

λ0,α
= (λ − λ0,α)c

λ0,α
(6.47)

and

vD = �λD c

λ0,α
. (6.48)

The normalized absorption and dispersion profiles then turn out to be the
convolutions

p(λ) ∗ φα(λ) and p(λ) ∗ ψα(λ).

Before proceeding with convolutions, it is convenient to write our distributions
in terms of the reduced variables

u0,α ≡ ν0,α − ν

�νD
, (6.49)

or

u0,α ≡ λ − λ0,α

�λD
, (6.50)
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φ ψ

Fig. 6.2. An example of Voigt and Faraday–Voigt functions, which are the convolution
with a Gaussian of the normalized absorption and dispersion profiles of Fig. 6.1.

depending on whether we are dealing with frequencies or wavelengths. With these
definitions, one has†

p(u0,α) = 1√
π

e−u2
0,α , (6.51)

φα(u0,α, aα) = 1

π

aα

u2
0,α + a2

α

, (6.52)

and

ψα(u0,α, aα) = 1

π

u0,α

u2
0,α + a2

α

, (6.53)

where

aα ≡ !α

�νD
or aα ≡ !αλ

2
0,α

c�λD
. (6.54)

Therefore, we can obtain single formal expressions valid for both the frequency
and the wavelength treatments. Attention need only be paid to the choice for u0,α

and aα. Keeping the old symbols for φα and ψα after the convolutions are carried
out, the new normalized absorption and dispersion profiles are given by the Voigt
and Faraday–Voigt functions (see Fig. 6.2):

φα(u0,α, aα) = 1√
π

H(u0,α, aα) (6.55)

† A factor 1/�νD appears explicitly in some texts (e.g., Landi Degl’Innocenti, 1992). One should understand
that the integration variable in these texts is still the frequency even though use has been made of the variable u.
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and

ψα(u0,α, aα) = 1√
π

F(u0,α, aα), (6.56)

where the functions H and F are defined by

H(u, a) ≡ a

π

∫ ∞

−∞
e−y2 1

(u − y)2 + a2
dy (6.57)

and

F(u, a) ≡ 1

π

∫ ∞

−∞
e−y2 u − y

(u − y)2 + a2
dy. (6.58)

Note that the factor 1/
√
π in Eqs (6.55) and (6.56) comes from our definition of

the Maxwellian distribution. Other definitions are possible. For example, if we take
a Doppler width

√
π times smaller than that of Eq. (6.42), this factor vanishes in

Eqs (6.55) and (6.56).
As a consequence of thermal motions the normalized absorption and dispersion

profiles have been considerably broadened as compared with those prevailing in the
absence of such motions.† This means that significant absorption and dispersion
processes may take place at far from central frequencies.

6.5 Spectral line absorption in moving media

A further generalization remains which concerns the mean macroscopic velocity
of the medium in the propagation direction of light vLOS (the index LOS stands
for “line of sight”). Such a bulk motion of the medium shifts the frequency and
wavelength of photons by

�νLOS ≡ ν0,α
vLOS

c
and �λLOS ≡ λ0,α

vLOS

c
. (6.59)

The distribution of frequency shifts now turns out to be p(ν − �νLOS) and that
of wavelength shifts p(λ − �λLOS) if we follow the astrophysical convention of
positive velocities for redshifts. Note that there is no apparent change in sign be-
tween the two shift distributions. Because of the invariance against translations of
the variable, the normalized absorption and dispersion profiles become

φα(u0,α, aα) = 1√
π

H(u0,α − uLOS, aα) (6.60)

and

ψα(u0,α, aα) = 1√
π

F(u0,α − uLOS, aα), (6.61)

where, obviously, uLOS is either �νLOS/�νD or �λLOS/�λD.

† Pressure broadening produces Lorentzian and dispersion profiles like natural broadening (e.g., Gray, 1992).
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We can now repeat Eqs (6.39) and (6.40) for the final expressions of the absorp-
tion and dispersion profiles,

χα(u0,α, aα) = Nπe2
0 f

mc
φα(u0,α, aα) (6.62)

and

χ̃α(u0,α, aα) = Nπe2
0 f

mc
ψα(u0,α, aα), (6.63)

where the normalized profiles are now given by Eqs (6.60) and (6.61).
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7

The radiative transfer equation

Y entonces, el maestro sacó la daga, y dijo: —“Yo no sé quién es Ángulo ni Obtuso, ni en
mi vida oı́ decir tales nombres; pero, con ésta en la mano, le haré yo pedazos”.

—F. de Quevedo y Villegas, 1603?

And then the master drew his dagger and said, ‘I never in my life heard of Angle or Obtuse,
but with this in my hand I’ll cut him to ribbons.’

So far we have been dealing with the propagation of light through media whose
refractive indices have been assumed to be constant with position (the assumption
of homogeneity). We are now able to embark on the study of the propagation of
light through media whose refractive indices – and hence absorptive and dispersive
properties – may vary along the ray path; a differential treatment is then in order.
More specifically, we shall deal with stratified media whose material properties are
constant in planes perpendicular to a given direction. Moreover, our study will not
only include passive systems but emission properties of the medium will also be
considered (although in the most simplified way).

There are three main hypotheses we should add to proceed with the develop-
ment that follows:

(1) We shall assume that the absorptive, dispersive, and emissive properties
of the medium are independent of the light-beam Stokes vector. This is
in fact a linear approximation that holds in many astrophysical applica-
tions, where, even though the medium may be dependent on the whole
radiation field, the angular width of the beam (indeed within the realm of
geometrical optics) is so small that its contribution to the physical condi-
tions of the medium can be neglected (e.g., Landi Degl’Innocenti and Landi
Degl’Innocenti 1981).

102
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(2) The radiation field will be assumed to be time-independent or, being more
specific, the rate of changes in I is much slower than the relaxation time
(or time for the photons to go through a mean free path). Time derivatives
∂I/∂t are set to zero.

(3) Although the medium is inhomogeneous, the refractive index is so close to
unity [Eq. (6.7)] that the effects of the term ∇ [

E · ∇(ln n2)
]

on the wave
equation can be neglected.†

7.1 A little geometry

Consider a ray of quasi-monochromatic light propagating along the Z axis of a
medium with principal axes given by the (right-handed) orthonormal set of vectors
{ê1, ê2, ê0}. It is important to note that we do not deal with the wavefront normal
but with the ray direction t̂ (= ẑ). The observation direction (the line of sight in
astrophysical terms) is then denoted by −ẑ. Therefore, the XY plane is appropriate
for defining the Stokes parameters.

Let us assume, without loss of generality, that ê1 is in the plane formed by ê0

and ẑ, and that it also has a positive x component (ê1 · x̂ > 0). The geometrical
configuration is illustrated in Fig. 7.1. Note that another choice for a right-handed
coordinate system could have been made by changing ê1 to −ê1 and ê2 to −ê2.
In such a case, ê1 · x̂ < 0. This dual choice reflects an ever-present ambiguity of
180◦ in determining the azimuthal angle of ê0 from observations. In spite of this
ambiguity, the geometrical configuration is completely general.

Let us call θ the colatitude angle of ê0, i.e., the angle between ê0 and ẑ (θ ∈
[0, π ]), and ϕ the azimuth angle of ê0, that is, the angle between the projection of
ê0 on the XY plane and the X axis (ϕ ∈ [0, 2π ]). Note that ϕ is the azimuthal
angle of ê1 as well. The transformation between the two orthonormal systems is
given by

(x̂ ŷ ẑ)T = B (ê1 ê2 ê0)
T, (7.1)

where

B ≡

 cos θ cosϕ − sinϕ sin θ cosϕ

cos θ sinϕ cosϕ sin θ sinϕ

− sin θ 0 cos θ


 . (7.2)

Note that B is a rotation matrix, since BBT = BTB = 11 and det(B) = 1.

† Although the wave equation has not been written in full here, its most general formulation contains a term
with that gradient which accounts for inhomogeneities in the medium. See, for example, Eq. (5) in Chapter 1
of Born and Wolf (1993).
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Fig. 7.1. Relevant geometry for radiative transfer.

Consider now the reference system given by the set of orthonormal complex
vectors {ê+1, ê0, ê−1} defined by

ê±1 ≡ 1√
2
(ê1 ± iê2),

ê0 ≡ ê0.

(7.3)

Of course, the norm comes from the scalar product a · b∗: êα · ê∗
β = δαβ, α, β =

+1, 0,−1. Equations (7.3) can be written in matrix form as

(ê1 ê2 ê0)
T = A (ê+1 ê0 ê−1)

T, (7.4)

where

A ≡ 1√
2


 1 0 1

−i 0 i
0

√
2 0


 , (7.5)

and it can be verified that AA† = A†A = 11, whence ATA∗ = A∗AT = 11, although
det(A) = −i. The index † means the adjoint, that is, the transpose of the complex
conjugate.
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The transformation between {x̂, ŷ, ẑ} and {ê+1, ê0, ê−1} is then given by

(x̂ ŷ ẑ)T = G (ê+1 ê0 ê−1)
T, (7.6)

where G ≡ BA has the explicit form

1√
2


 cos θ cosϕ + i sinϕ

√
2 sin θ cosϕ cos θ cosϕ − i sinϕ

cos θ sinϕ − i cosϕ
√

2 sin θ sinϕ cos θ sinϕ + i cosϕ
− sin θ

√
2 cos θ − sin θ


 (7.7)

and it can be verified that GG† = G†G = 11, whence G∗GT = GTG∗ = 11, and
det(G) = −i. Therefore, matrix G∗ (the inverse matrix of GT) gives the transforma-
tion between the principal components of the vector electric field and its Cartesian
components: 

 Ex(t)
Ey(t)

0


 = G∗


 E+1(t)

E0(t)
E−1(t)


 . (7.8)

7.2 Variations of the coherency matrix
along the ray path

Consider again our ray propagating along the Z axis. The relevant length along the
ray path ( t̂ = ẑ) is r · ẑ = z. Hence, at a given point z in the path, the principal
components of the electric field given by Eq. (6.9) can be written as

Eα(t) = {Eα(t) e− 1
2 [χα−i(χ̃α+ 2ω

c )]zei�ωα(t)
}
e−iωt , (7.9)

where the absorption and dispersion profiles are given by Eqs (6.62) and (6.63).
If we define

� ≡ 1

2
diag

[
χ+1 − i

(
χ̃+1 + 2ω

c

)
, χ0 − i

(
χ̃0 + 2ω

c

)
, χ−1 − i

(
χ̃−1 + 2ω

c

)]
(7.10)

then the variations of the vector electric field along the ray path at such points are
given by

d

dz


 E+1

E0

E−1


 = −�


 E+1

E0

E−1


 . (7.11)

After transformation (7.8), Eq. (7.11) can be written as

d

dz


 Ex

Ey

0


 = −G∗�GT


 Ex

Ey

0


 , (7.12)
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and, calling T the 2 × 2 matrix made from the first two rows and the first two
columns of G∗�GT, we finally obtain the variation of the Cartesian components of
the electric field along the ray path:†

d

dz

(
Ex

Ey

)
= −T

(
Ex

Ey

)
. (7.13)

Since, by definition,

C =
〈 (

Ex

Ey

) (
E∗

x E∗
y

) 〉
, (7.14)

and because the derivative operator is linear and continuous and hence commutes
with time averages, the variations of the coherency matrix along the ray path are
given by

dC
dz

= −(TC + CT†). (7.15)

Let H ≡ TC + CT†. Then, Eq. (7.15) becomes

dC
dz

= −H. (7.16)

7.3 Variations of the Stokes parameters
along the ray path

After multiplying Eq. (7.16) by the Pauli and identity matrices and taking the trace
on both sides of the equation, we obtain one equation for the variation along the
ray path, owing to absorption and dispersion processes, of each of the four Stokes
parameters [remembering Eqs (3.16), (3.17), and (3.18)]:

d

dz
Tr (C�i ) = −Tr (H�i ), i = 0, 1, 2, 3. (7.17)

According to Eq. (3.16), the left-hand side of Eq. (7.17) represents the derivative
with respect to z of a given Stokes parameter if we neglect the dimensional constant
κ that converts the Stokes parameters to specific intensity units. This neglecting of
κ is justified since the constant appears on the right-hand side of the equation as
well. This side can be neatly written as

Tr (H�i ) =
3∑

j=0

Ki j I j , (7.18)

† The column vector appearing in Eq. (7.13) is known as the Jones vector of the light beam, so that equation
accounts for the variations of the Jones vector owing to absorption and dispersion processes.
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where

Ki j ≡ 1

2
Tr (T� j �i + � j TT�i ) (7.19)

and I0 = I , I1 = Q, I2 = U , and I3 = V . Equations (7.18) and (7.19) come
directly from applying Eq. (3.18) to the definition of matrix H.

Written in full, and neglecting κ , the right-hand side of Eq. (7.17) reads

Tr (H�0) = Re (T11 + T22)I + Re (T11 − T22)Q
+ Re (T12 + T21)U + Im (T12 − T21)V

Tr (H�1) = Re (T11 − T22)I + Re (T11 + T22)Q
+ Re (T12 − T21)U + Im (T12 + T21)V

Tr (H�2) = Re (T12 + T21)I − Re (T12 − T21)Q
+ Re (T11 + T22)U − Im (T11 − T22)V

Tr (H�3) = Im (T12 − T21)I − Im (T12 + T21)Q
+ Im (T11 − T22)U + Re (T11 + T22)V .

(7.20)

In summary, it is easy to see that Eq. (7.17) represents an equation for the Stokes
vector of the form

d

dz




I
Q
U
V


 = −




ηI ηQ ηU ηV

ηQ ηI ρV −ρU

ηU −ρV ηI ρQ

ηV ρU −ρQ ηI







I
Q
U
V


 , (7.21)

where the different matrix elements on the right-hand side are easily identifiable
from Eq. (7.20):

ηI ≡ Re (T11 + T22), ηQ ≡ Re (T11 − T22),

ηU ≡ Re (T12 + T21), ηV ≡ Im (T12 − T21),

ρQ ≡ −Im (T11 − T22), ρU ≡ −Im (T12 + T21),

ρV ≡ Re (T12 − T21).

(7.22)
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By definition of matrix T we have

T11 + T22 = '0 sin2 θ + 1

2
('+1 + '−1)(1 + cos2 θ),

T12 + T21 =
[
'0 − 1

2
('+1 + '−1)

]
sin2 θ sin 2ϕ,

T11 − T22 =
[
'0 − 1

2
('+1 + '−1)

]
sin2 θ cos 2ϕ,

T12 − T21 = i('−1 − '+1) cos θ,

(7.23)

where 'α, α = +1, 0,−1, are the diagonal elements of matrix � [Eq. (7.10)].
Notably, T12 − T21, the difference involved in the definition of ηV and ρV , is pro-
portional to the difference of right-handed minus left-handed terms. Taking real
and imaginary parts of the above expressions one finally gets

ηI = 1

2

{
χ0 sin2 θ + 1

2
[χ+1 + χ−1] (1 + cos2 θ)

}
,

ηQ = 1

2

{
χ0 − 1

2
[χ+1 + χ−1]

}
sin2 θ cos 2ϕ,

ηU = 1

2

{
χ0 − 1

2
[χ+1 + χ−1]

}
sin2 θ sin 2ϕ,

ηV = 1

2
[χ−1 − χ+1] cos θ,

(7.24)

and

ρQ = 1

2

{
χ̃0 − 1

2

[
χ̃+1 + χ̃−1

]}
sin2 θ cos 2ϕ,

ρU = 1

2

{
χ̃0 − 1

2

[
χ̃+1 + χ̃−1

]}
sin2 θ sin 2ϕ,

ρV = 1

2

[
χ̃−1 − χ̃+1

]
cos θ.

(7.25)

Therefore, the matrix elements of Eq. (7.21) are made up of the various absorption
and dispersion profiles characteristic of the medium and all the geometry relevant
to the problem. That equation can be written in a more compact matrix form as

dI
dz

= −KI, (7.26)
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where K, anticipated in Eq. (7.19), may be called the propagation matrix. Some
texts and papers use the less fortunate names of “absorption” or “absorption–
dispersion” matrix. These names come from an extrapolation of the scalar transfer
equation for isotropic media (also called “for unpolarized light”), which we shall
discuss later. The term propagation matrix seems more suitable because not only
are absorption and dispersion described by the matrix but also birefringence (or
dichroism). In fact, the symmetries of matrix K allow us to decompose it in three
matrices:

K =




ηI 0 0 0
0 ηI 0 0
0 0 ηI 0
0 0 0 ηI


 +




0 ηQ ηU ηV

ηQ 0 0 0
ηU 0 0 0
ηV 0 0 0




+




0 0 0 0
0 0 ρV −ρU

0 −ρV 0 ρQ

0 ρU −ρQ 0


 .

(7.27)

In Eq. (7.27), the first, diagonal matrix corresponds to absorption phenomena. En-
ergy from all polarization states is withdrawn by the medium: all four Stokes
parameters evolve the same way. The second, symmetric matrix corresponds to
dichroism: some polarized components of the beam are extinguished more than
others because the matrix elements are generally different. Finally, the third, anti-
symmetric matrix corresponds to dispersion: phase shifts that take place during
the propagation to some extent change different states of linear polarization among
themselves (Faraday rotation) and states of linear polarization with states of circu-
lar polarization (Faraday pulsation).

7.4 Some properties of the propagation matrix

Although Eq. (7.26) does not represent a finite transformation between two sets of
Stokes parameters like Eq. (4.28), the role of the propagation matrix is reminiscent
of that of the Mueller matrix. We could call it a pseudo-Mueller matrix or an
“infinitesimal” Mueller matrix. With this interpretation, the evolution of the Stokes
vector consists in the incoherent (infinitesimal) subtraction of light beams from the
original one. It is by no means strange, then, that matrix K displays properties
already known for Mueller matrices. In particular, the first element, ηI , is non-
negative [Eq. (7.24)] and the elements of the first line and of the first column verify
that

η2
I ≥ η2

Q + η2
U + η2

V , (7.28)
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equivalent to Eqs (4.33) and (4.34). This result comes directly from the expressions
for those elements in terms of the absorption and dispersion profiles. In fact, after
some algebra, Eqs (7.24) give

η2
I − η2

Q − η2
U − η2

V = χ+1χ−1 cos2 θ + 1

2
χ0(χ+1 + χ−1) sin2 θ, (7.29)

and the right-hand side of this equation is always non-negative. As is usual for
Mueller matrices, these four matrix elements constitute the diattenuation and the
polarizance vectors so they are responsible for both the variations of the total
intensity of the light beam as a function of the state of polarization and of the
empolarizing capabilities of the medium (i.e., of its capability to increase the degree
of polarization). Should the last three elements of the first column be zero, unpo-
larized light would remain unpolarized throughout the medium. In fact, we have
already noted that the leftmost matrix on the right-hand side of Eq. (7.27) is unable
to alter the degree of polarization of light.

The only way that ηQ = ηU = ηV = 0 is for the three absorption profiles χα

to be the same, i.e., for absorption to be isotropic. But if absorption is isotropic so
is dispersion because Eqs (6.30) and (6.32) tell us that χ̃α = (χα/!α) (ν0,α − ν).
This is the case, for instance, for continuum radiation, which we have discussed
in Section 6.3. Depending on the geometry of the problem, some η’s (and the
corresponding ρ’s) may be zero. Such particular cases will be discussed later.

Much as I , V , and
√

Q2 + U 2 are intrinsic parameters of the light beam regard-
less of the reference frame (see Section 4.6.1), Eqs (7.24) and (7.25) readily show
that

η2
L ≡ η2

Q + η2
U

and

ρ2
L ≡ ρ2

Q + ρ2
U

are independent of the reference system used to define the Stokes parameters, since
they do not depend on the azimuth angle, ϕ. As a matter of fact, a rotation of the
reference system for measuring the Stokes parameters (the XY plane) by an angle
γ (see Section 4.6.1) transforms the propagation matrix into




ηI η′
Q η′

U ηV

η′
Q ηI ρV −ρ ′

U

η′
U −ρV ηI ρ ′

Q

ηV ρ ′
u −ρ ′

Q ηI


 ,
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where it is evident that ηI , ηV , and ρV are invariant against the transformation. In
contrast, ηQ, ηU , ρQ and ρU are modified as

η′
Q = c2ηQ − s2ηU ,

η′
U = s2ηQ + c2ηU ,

ρ ′
Q = c2ρQ − s2ρU ,

ρ ′
Q = s2ρQ + c2ρU ,

whence η′2
Q + η′2

U = η2
Q + η2

U and ρ ′2
Q + ρ ′2

U = ρ2
Q + ρ2

U . Here, c2 = cos 2γ and
s2 = sin 2γ .

It is also very interesting to understand the evolution of the degree of polarization
of light traveling through an absorptive and dispersive medium. Let us consider the
derivative of the quantity f ≡ I 2 − Q2 − U 2 − V 2 = I 2(1 − p2). By writing

f = ITMI,

where M is the Minkowsky metric matrix

M ≡




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 ,

it is easy to check that

d f

dz
= −IT

[
(MK)T + MK

]
I = −2ηI f.

The solution of the above equation is

f (z) = f (z0) e−2
∫ z

z0
ηI (z′) dz′

,

that is, f decreases exponentially from its initial value. Since f and ηI are always
non-negative, the derivative must always be non-positive. Hence, the square degree
of polarization turns out to be

p2(z) = 1 − f (z0)

I 2(z)
e−2

∫ z
z0

ηI (z′) dz′
. (7.30)

Since 0 ≤ p2 ≤ 1 at all points, the second term on the right of Eq. (7.30) is also
bounded between 0 and 1, which means that the ratio I 2(z0)

[
1 − p2(z0)

]
/I 2(z)

always increases more slowly than exponentially. It is noteworthy that no matter
what the initial degree of polarization, a medium with ηI = constant transmits a
beam that is asymptotically completely polarized. Moreover, if the initial degree
of polarization is unity, the light stays totally polarized throughout the medium
whatever ηI .
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A medium which is unable to decrease the degree of polarization of totally
polarized light is said to be non-depolarizing. Hence, we have deduced that ab-
sorption and dispersion processes are non-depolarizing; in other words, a propaga-
tion matrix like K is a sufficient condition for the medium to be non-depolarizing.
Landi Degl’Innocenti and Landi Degl’Innocenti (1981) showed that every non-
depolarizing medium must necessarily have a propagation matrix with the sym-
metries of matrix K. Therefore, we have a necessary and sufficient condition and
can then conclude that depolarizing effects can appear in the transport of radiative
energy only through the emission terms that we have so far neglected.

7.5 Emission processes

Equation (7.26) accounts only for absorption and dispersion effects. To under-
stand fully the variations of the Stokes vector along the ray path, we need a new
term including the emissive properties of the medium. Such a term is customarily
represented by a Stokes vector,

j ≡




jI

jQ

jU
jV


 , (7.31)

whose characteristics are to be determined in this section. Therefore, the radiative
transfer equation (RTE) will read

dI
dz

= −KI + j, (7.32)

hence including the (incoherent) subtraction (first term) and the (incoherent) addi-
tion of infinitesimal Stokes beams. Note that the RTE can be considered as a single
differential equation for vector quantities, or as a system of four coupled differ-
ential equations for scalar quantities: no solution can be found for a given Stokes
parameter without solving the entire system.

Although customary in most textbooks, it is very difficult to establish concep-
tually a neat distinction between “true” absorption on the one hand and emission
and scattering processes on the other. Many ambiguities arise when one scrutinizes
the many microscopic phenomena giving rise to the interaction between radiation
and matter. We refer the interested reader to the excellent didactic discussions of
Cox and Giuli (1968) and Mihalas (1978). We shall not enter into details but a few
words are necessary to establish the framework (i.e. the assumptions) within which
our developments are valid. In fact, the phenomenological description of absorp-
tion on the basis of the Lorentz electron model may include processes typically
characterized as scattering.
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In a broad sense, one could say that “true” absorption processes include those
supplying energy to the thermal pool of matter at the expense of electromagnetic
energy, while scattering influences the energetic balance by deviating photons from
their original path after having collided with material particles; in such processes,
not only the direction of light may have changed but also the frequency of pho-
tons, although only a slight influence (if any) is effected on the kinetic energy of
matter. This broad difference clearly illustrates that some phenomena are mostly
dependent upon the local value of the material thermodynamic variables (true
absorption and emission), while others (scattering) depend mainly on the radia-
tion field, which may therefore be connecting fairly distant places of the medium.
Hence, the general radiative transfer problem has a marked non-linear character:
one is seeking a transfer equation that explains the evolution of the Stokes vec-
tor of light once the material properties are known; however, the state of matter
is dependent upon the characteristics of the radiation field itself, and the formu-
lation of statistical equilibrium equations is required. The simultaneous solution
of both the radiative transfer equation and the statistical equilibrium equations is
mandatory.

This book deliberately skips this general problem of polarized radiative transfer
and tries to provide but a first step in our understanding of this enormous and excit-
ing puzzle. The discussion will be limited to the simplest case of those situations
for which departures from the so-called local thermodynamic equilibrium (LTE)
approximation are negligible. More general, rigorous treatments can be found in
the monographs by Stenflo (1994) and Landi Degl’Innocenti and Landolfi (2003).
Although manifestly inconsistent from a conceptual point of view, the LTE approx-
imation turns out to be a satisfactory approach for many applications of interest in
both the laboratory and the astrophysical contexts that will be discussed in the fol-
lowing chapters. In particular, the formation of a large number of spectral lines
in the photosphere of the Sun and other cool stars is adequately described by as-
suming that radiative transfer has taken place in conditions of local thermodynamic
equilibrium.

The LTE hypothesis basically consists in assuming that only radiation (and not
matter) is allowed to deviate from a thermodynamic equilibrium situation because
of the transport. All the thermodynamic properties of matter are assumed to be
governed by the thermodynamic equilibrium equations but at the local values of
temperature, T , and density, ρ. Hence, the local distribution of velocities is
Maxwellian [Eq. (6.41)]; the local number of absorbers and emitters in the vari-
ous quantum states is given by the Boltzmann and Saha equations, and Kirchhoff’s
law is verified:

jT = Bν(T ) (ηI , ηQ, ηU , ηV ), (7.33)
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thus providing the needed emission term having exactly the same frequency shape
as the absorption profiles. Naturally, the emission vector includes only the first line
of the propagation matrix since it is these elements that affect the modifications
of the total intensity (first Stokes parameter) of the light beam. Inequality (7.28)
ensures the physical meaning of j as a Stokes vector. Moreover, Eq. (7.29) im-
plies that the emission vector is partially polarized, and that it is then responsible
for depolarization effects along the ray path, according to the discussions in the
preceding section and Section 3.4.

The physical conditions in a stellar atmosphere are distant from those of an adia-
batically isolated enclosure in which thermodynamic equilibrium prevails. Fairly
large gradients exist in the temperature and density throughout, and radiation can-
not be isotropic since light can escape from the outermost parts of the stellar
envelope. Nonetheless, one can conceive of some mechanism that enforces LTE
conditions, such as frequent collisions between material particles, which some-
how decouple matter from radiation. We may then expect that the larger the
density, the closer the conditions in the medium to LTE. Hence, departures from
this approximation can be foreseen for lines formed mostly in the outermost
stellar photosphere and in the chromosphere, where densities are not high
enough.

Pure scattering processes may exhibit clear differences between the absorption
and emission profiles so that they may avoid the use of the Kirchhoff’s relationship
(7.33). This is not the case, however, for thermodynamic equilibrium when natu-
ral excitation prevails, when absorption and emission profiles are the same. Nor
is it the case for those conditions that make valid the complete redistribution ap-
proximation. According to this approximation there is no correlation between the
frequencies of the incoming and scattered photons because, for example, there is a
continuous supply of atoms in the upper state of the transition due, for example, to
collisions. Again, an adequate rate of collisions helps in keeping the medium such
that absorption and emission profiles are related by the Planck function at the local
temperature.

In summary, we may say that within the LTE and complete redistribution approx-
imations, light streams through a plane–parallel or stratified medium according to
the following RTE:

d

dz




I
Q
U
V


 = −




ηI ηQ ηU ηV

ηQ ηI ρV −ρU

ηU −ρV ηI ρQ

ηV ρU −ρQ ηV







I
Q
U
V


 + Bν(T )




ηI

ηQ

ηU

ηV




(7.34)
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or, more compactly,

d

dz




I
Q
U
V


 = −




ηI ηQ ηU ηV

ηQ ηI ρV −ρU

ηU −ρV ηI ρQ

ηV ρU −ρQ ηV







I − Bν(T )

Q
U
V


 , (7.35)

where

S ≡ (Bν(T ), 0, 0, 0)T (7.36)

is called the source function vector.

7.6 The RTE for spectral line formation

Yet some manipulations remain in order to shape the RTE into a common and use-
ful form for describing the formation of spectral lines in an anisotropic medium.
Contributions from both continuum-forming processes and pure line-forming pro-
cesses ought to be added in the propagation matrix, so that K = Kcont + Klin.

According to the discussions of Section 7.4, the propagation matrix for those
processes giving rise to the continuum is proportional to the 4 × 4 identity matrix,

Kcont = χcont11, (7.37)

where χcont is the frequency-independent absorption coefficient for the continuum
(see Section 6.3). On the other hand, according to Eqs (7.24), (7.25), (6.62), and
(6.63), we can write

Klin ≡ Nπe2
0 f

mc
�, (7.38)

where � contains only the normalized absorption and dispersion profiles
φα(u0,α, aα) and ψα(u0,α, aα). Therefore, the total propagation matrix turns out
to be

K = χcont(11 + η0�), (7.39)

where, by definition, η0 is the line-to-continuum absorption coefficient ratio,

η0 ≡ χlin

χcont
= Nπe2

0 f

mcχcont
. (7.40)

Let us introduce now the continuum optical depth variable via the expression

τc ≡
∫ z0

z
χcont dz. (7.41)

Note that the above definition implies that optical depths are measured along the
ray path but in the opposite direction (i.e., −ẑ) and the origin (τc = 0) is located
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in the outermost boundary of the medium (z0), where the observer is located. If,
according to Eq. (6.16), we write the integrand of Eq. (7.41) as 1/ cont, the inter-
pretation of the optical depth is natural: τc represents the (dimensionless) number
of mean free paths of continuum photons between the outermost boundary and
point z.

Using τc as the independent variable, the RTE can be written as

dI
dτc

= K (I − S), (7.42)

where we have kept the symbol K for the propagation matrix; that is, from now on

K = 11 + η0�. (7.43)

Thus, the matrix elements of K ought to be recast in the following form:

ηI = 1 + η0

2

{
φ0 sin2 θ + 1

2
[φ+1 + φ−1] (1 + cos2 θ)

}
,

ηQ = η0

2

{
φ0 − 1

2
[φ+1 + φ−1]

}
sin2 θ cos 2ϕ,

ηU = η0

2

{
φ0 − 1

2
[φ+1 + φ−1]

}
sin2 θ sin 2ϕ,

ηV = η0

2
[φ−1 − φ+1] cos θ,

(7.44)

and

ρQ = η0

2

{
ψ0 − 1

2
[ψ+1 + ψ−1]

}
sin2 θ cos 2ϕ,

ρU = η0

2

{
ψ0 − 1

2
[ψ+1 + ψ−1]

}
sin2 θ sin 2ϕ,

ρV = η0

2
[ψ−1 − ψ+1] cos θ.

(7.45)

7.7 Radiative transfer through isotropic media

Let us here consider a particularly interesting case. Let us assume that the medium
is isotropic. Then, according to the discussions of Sections 6.2 and 7.4, we have
ηQ = ηU = ηV = ρQ = ρU = ρV = 0, because φα(u0,α, aα) = φ(u0, a), ∀α =
+1, 0,−1 and ψα(u0,α, aα) = ψ(u0, a), ∀α = +1, 0,−1. The propagation matrix
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turns out to be diagonal. This enormously simplifies the problem since the RTE
becomes four uncoupled equations each for a given Stokes parameter:

dI

dτc
= (1 + η0φ) (I − Bν), (7.46)

dQ

dτc
= (1 + η0φ) Q, (7.47)

dU

dτc
= (1 + η0φ) U, (7.48)

and

dV

dτc
= (1 + η0φ) V . (7.49)

Hence, one can solve for each Stokes parameter independently of the others.
Equation (7.46) is usually called the radiative transfer equation for unpolarized
light but here we can easily appreciate the unsuitability of such a name. This
equation is one among the four that result for the particular case of an isotropic
medium. Only when the boundary condition (obviously required for solving the
equations) assumes that light is originally unpolarized (Q0 = U0 = V0 = 0) will
Eqs (7.47), (7.48), and (7.49) predict that light will remain unpolarized throughout
the medium. No Q, U , or V can be generated from zero because of the absence
of a source term in their equations. This assumption is often employed for spectral
line formation in stellar photospheres and hence the name. In any other case (e.g.,
the transfer of an originally polarized beam through an isotropic slab), all four
equations must be solved to understand the polarization state of the light beam.

7.8 Propagation along the optical axis and
in a perpendicular direction

This section is devoted to two particular cases for which the RTE becomes signifi-
cantly simplified like that when light propagates through an isotropic medium.

Imagine that the optical axis, ê0, stays unaltered throughout the medium, and
that the ray path coincides with it (or with −ê0). In such a case, the colatitude
angle θ = 0 (π ) so that the matrix elements of K become

ηI = 1 + η0

2
[φ+1 + φ−1] , (7.50)

ηQ = ηU = ρQ = ρU = 0, (7.51)
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ηV = η0

2
[φ−1 − φ+1] , (7.52)

and

ρV = η0

2
[ψ−1 − ψ+1] . (7.53)

When θ = π , ηV and ρV become −ηV and −ρV .
We can readily understand why φ0 and ψ0 have disappeared: light polarized

along ê0 cannot propagate along ê0 because electromagnetic waves are transversal.
The transfer equation adopts the simpler shape

d

dτc




I
Q
U
V


 =




ηI 0 0 ηV

0 ηI ρV 0
0 −ρV ηI 0

ηV 0 0 ηI







I − Bν

Q
U
V


 , (7.54)

where only Stokes I and V , on the one hand, and Stokes Q and U , on the other,
are coupled. Since no source term appears in the Stokes Q and U equations, we
may conclude that, if light is originally unpolarized, no linear polarization can be
produced as a consequence of the transfer. On the contrary, two independent scalar
equations can be obtained for I + V and for I − V , namely,

d

dτc
(I ± V ) = (ηI ± ηV ) (I ± V − Bν), (7.55)

which are formally identical to that of Stokes I for the isotropic case.
In summary, we can say that if light is originally unpolarized before entering the

medium, only circular polarization can be produced when the ray path coincides
with the optical axis of the medium.

Imagine now that t̂ · ê0 = 0, so that θ = π/2, and that ϕ is fixed throughout the
medium. The matrix elements reduce to

ηI = 1 + η0

2

{
φ0 + 1

2
[φ+1 + φ−1]

}
, (7.56)

ηQ = η0

2

{
φ0 − 1

2
[φ+1 + φ−1]

}
cos 2ϕ, (7.57)

ηU = η0

2

{
φ0 − 1

2
[φ+1 + φ−1]

}
sin 2ϕ, (7.58)

ρQ = η0

2

{
ψ0 − 1

2
[ψ+1 + ψ−1]

}
cos 2ϕ, (7.59)
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ρU = η0

2

{
ψ0 − 1

2
[ψ+1 + ψ−1]

}
sin 2ϕ, (7.60)

ηV = ρV = 0, (7.61)

and the RTE to

d

dτc




I
Q
U
V


 =




ηI ηQ ηU 0
ηQ ηI 0 −ρU

ηU 0 ηI ρQ

0 ρU −ρQ ηI







I − Bν

Q
U
V


 . (7.62)

Let us rotate the reference system for measuring the Stokes parameters by an
angle −ϕ, opposite of the current azimuth angle. According to the discussion of
Section 7.4, ηI , ηV , and ρV remain the same whilst

η′
Q = η0

2

{
φ0 − 1

2
[φ+1 + φ−1]

}
=

√
η2

Q + η2
U ,

ρ ′
Q = η0

2

{
ψ0 − 1

2
[ψ+1 + ψ−1]

}
=

√
ρ2

Q + ρ2
U ,

and

η′
U = ρ ′

U = 0.

In this new reference system, the RTE reads

d

dτc




I
Q′

U ′

V


 =




ηI η′
Q 0 0

η′
Q ηI 0 0
0 0 ηI ρ ′

Q

0 0 −ρ ′
Q ηI







I − Bν

Q′

U ′

V


 . (7.63)

Note that only Stokes Q and U get transformed whilst I and V are invariant.
We have succeeded in decoupling Stokes I and Q′ on the one hand, and Stokes

U ′ and V on the other. Since the latter have no source terms in their equations, light
on input with U ′

0 = V0 = 0 will remain throughout the medium with U ′ = V = 0.
This is not always the case, however. If U ′

0 and V0 are different from zero, a
“transfer” of Stokes V to U ′, and vice versa, takes place as long as light travels
through the medium. With the equations for Stokes I and Q′ a result is found
similar to that of the propagation along the optical axis, but this time polarization
can only be linear if the original light is unpolarized:

d

dτc
(I ± Q′) = (ηI ± η′

Q) (I ± Q′ − Bν). (7.64)
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8

The RTE in the presence of a magnetic field

Magnetic fields are to astrophysics as sex is to psychology.
—H. C. van de Hulst, 1989.

Now that we have formulated the general RTE for a stratified anisotropic medium
in LTE, let us particularize our study to the case of an atomic vapor permeated by a
magnetic field, B. For convenience, we shall consider the medium to be isotropic in
the absence of an “external” magnetic field. It is thus B that establishes the optical
anisotropy by introducing a “preferential” direction.

In order to understand the basic concepts, we start again with the simple Lorentz
model of the electron as in Chapter 6 (this time introducing the Lorentz force in the
dynamical balance). In this way, the so-called “normal” Zeeman effect gets fully
explained. The “anomalous” Zeeman effect, however, needs further results from
quantum mechanics that will be summarized later. As the reader may already have
realized from the historical introduction, this procedure conforms with historical
developments. As in many other branches of physics, a chronological treatment
helps in comprehension, although it is not strictly necessary.

In this chapter, we shall see that a single (unpolarized) spectral line in the ab-
sence of a magnetic field splits into various Zeeman components, each with a dis-
tinct state of polarization that may, of course, vary along the profile.

8.1 The Lorentz model of the electron

Let us resume our discussion of Section 6.2 on the Lorentz model. If the medium
is assumed to be isotropic, Newton’s second law for each of the three components
of the electron position [Eq. (6.23)] now reads:

mr̈α(t) = −e0 Eα(t) − qrα(t) − mγ ṙα(t), (8.1)
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where q = qα and γ = γα, ∀α = +1, 0,−1. The solution of this equation and
the ensuing developments of Chapter 6 lead to single (i.e., isotropic) normalized
absorption and dispersion profiles given by

φ(u0, a) = 1√
π

H(u0 − uLOS, a) (8.2)

and

ψ(u0, a) = 1√
π

F(u0 − uLOS, a) (8.3)

because the resonant frequencies u0,α and the damping coefficients aα are all three
equal to u0 and a, respectively.

Assume now that a magnetic field B = Bê0 is applied. A new force, the Lorentz
force,

FL = −e0

c
ṙ ∧ B,

is then exerted on the electron and must be included in the equation of motion.
Here, the symbol ∧ represents the vector product, and the equation is written in
the Gaussian system of units. Note that the assumption that B ‖ ê0 is completely
general. If the medium is originally isotropic, all directions are equivalent. It is in-
deed the magnetic field that makes ê0 a “preferential” direction, hence establishing
anisotropy. With this assumption, light polarized along the ê0 direction is linearly
polarized along the magnetic field lines and light polarized in the the ê−1 (ê+1)
direction is right-hand (left-hand) circularly polarized in a plane perpendicular to
the magnetic field.

The α component of the Lorentz force is

FL,α = FL · ê∗
α = −i

e0 B

c
α ṙα,

where we have used the vector product êα ∧ ê0 = iαêα, ∀α = +1, 0,−1. Adding
this term to Eq. (8.1) and following the same steps as in Section 6.2, we arrive at

δα = Ne2
0

4πmν

ν0,α − ν

(ν0,α − ν)2 + !2
,

κα = Ne2
0

4πmν

!

(ν0,α − ν)2 + !2
,

(8.4)

so that the real and imaginary parts of the refractive index have the same general
expressions [Eqs (6.29)] but now with an isotropic damping coefficient, with reso-
nant frequencies given by

ν0,α = ν0 + ανL, α = +1, 0,−1, (8.5)



8.1 The Lorentz model of the electron 123

and with resonant wavelengths given by

λ0,α = λ0 − αλB, α = +1, 0,−1, (8.6)

where ν0 and λ0 are the (isotropic) resonant frequency and wavelength in the ab-
sence of B, νL is the Larmor frequency,

νL ≡ e0 B

4πmc
, (8.7)

and

λB ≡ λ2
0νL

c
(8.8)

is the Zeeman wavelength splitting†, which can be expressed numerically as

λB = 4.67 × 10−13λ2
0 B, (8.9)

where wavelengths are expressed in angstroms and magnetic field strengths in
gauss.

Let us proceed further by accounting for the quantum mechanical correction
concerning the oscillator strength (Section 6.3) and the thermal and macroscopic
motions of material particles (Sections 6.4 and 6.5). If we set

u0 ≡ ν0 − ν

�νD
= λ − λ0

�λD
(8.10)

and

uB ≡ νL

�νD
= λB

�λD
, (8.11)

the absorption and dispersion profiles become

φα(u0, a) = 1√
π

H(u0 + αuB − uLOS, a) (8.12)

and

ψα(u0, a) = 1√
π

F(u0 + αuB − uLOS, a). (8.13)

Note that the single (unpolarized) absorption and dispersion profiles in the ab-
sence of B are each now split into three components that are shifted in frequency
with respect to the original position. The right-handed circular component (−1)
is shifted to the red (longer wavelengths) and the left-handed circular component
(+1) to the blue (shorter wavelengths). The linearly polarized component (0) in
the direction of the magnetic field is unperturbed from the original position in the

† In fact, λB is the splitting of a normal Zeeman triplet of Landé factor unity. It is helpful to describe general
Zeeman patterns when it is used as a unit of measure (the Lorentz unit). See Section 8.3.1.
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absence of the field. Note that Eq. (8.9) tells us that the greater the magnetic field
strength (or the longer the wavelength), the wider the splitting. Therefore, for a
given spectral line, the amount of splitting may serve as a diagnostic of the mag-
netic field strength. Also, for a given magnetic field strength permeating the atomic
vapor, spectral lines at longer wavelengths provide more accurate diagnostics (e.g.,
the splitting in the infrared is greater than in the visible).

We can label the three components with subscripts “r” (for “red” or for “right-
handed”), “b” (for “blue”), and “p” (for “principal”), respectively. With this nota-
tion, the elements of the propagation matrix read

ηI = 1 + η0

2

{
φp sin2 θ + 1

2
[φb + φr](1 + cos2 θ)

}
,

ηQ = η0

2

{
φp − 1

2
[φb + φr]

}
sin2 θ cos 2ϕ,

ηU = η0

2

{
φp − 1

2
[φb + φr]

}
sin2 θ sin 2ϕ,

ηV = η0

2
[φr − φb] cos θ,

(8.14)

and

ρQ = η0

2

{
ψp − 1

2
[ψb + ψr]

}
sin2 θ cos 2ϕ,

ρU = η0

2

{
ψp − 1

2
[ψb + ψr]

}
sin2 θ sin 2ϕ,

ρV = η0

2
[ψr − ψb] cos θ,

(8.15)

where the angles θ and ϕ have obviously to be interpreted as the inclination angle of
the magnetic field vector with respect to the propagation direction and the azimuth
angle of B with respect to the Stokes Q positive direction, respectively.

A graphical illustration of the wavelength shape of the various propagation ma-
trix elements is presented in Fig. 8.1 for a normal triplet and for two values of the
Zeeman splitting. The parameters are: η0 = 10, a = 0.05, θ = π/4, ϕ = π/6, and
uB = 2.4 (solid lines) and u B = 1.2 (dashed lines). Note the strong dependence on
the splitting, that Q and U profiles only differ in scale, and the significantly broad
wings of ρV that demand radiative transfer calculations at a fair distance from the
line core.
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ρ ρ

ρ
η η

ηη

Fig. 8.1. Examples of absorption and dispersion profiles for a normal Zeeman triplet. See
text for details.

The labeling of the Zeeman components according to wavelength shifts is conve-
nient for the following reason. So far, the association between the values of index α

and the polarization character of the component profiles has been stressed. Hope-
fully, this association has helped the reader in understanding the sign conventions.
However, it might be confusing because the polarization character depends on the
propagation direction. Elliptically polarized light is absorbed and dispersed in gen-
eral as reflected in Eqs (8.14) and (8.15). As can easily be seen in the equations,
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Blue component  P. component Red componentInclination

�  = 0

�  = π/2

Other

Fig. 8.2. Graphical states of polarization of absorbed and dispersed Zeeman components
of a normal triplet.

when θ = 0 (that is, when light propagates in the direction of the magnetic field),
the terms involving φp and ψp (φ0 and ψ0 in the previous notation) vanish. This
conforms with the fact that no linearly polarized light in the propagation direc-
tion is allowed because electromagnetic waves are transversal. This was already
known to us after the discussions in Section 7.8, where the propagation in a direc-
tion perpendicular to the optical axis (i.e., perpendicular to B) was also discussed.
Nevertheless, in such a case, φb and φr (and the corresponding ψ values) do not
disappear. They still contribute to ηI , ηQ , ηU , ρQ , and ρU as if they were lin-
ear components polarized in a direction perpendicular to the magnetic field vector
(and, of course, to the propagation direction). When light propagates at angles
other than 0 and π/2, φb (ψb) and φr (ψr) represent the absorption (dispersion) of
elliptically polarized light, as shown in Fig. 8.2.

8.1.1 Symmetry properties of the propagation matrix elements

The elements of the propagation matrix shown in Fig. 8.1 have remarkable sym-
metry properties. Note that ηI , ηQ , ηU , and ρV are symmetric in wavelength with
respect to the central position of the line;† ηV , ρQ , and ρU are antisymmetric. More
explicitly,

† We understand that the shift uLOS due to the macroscopic motions of the material is already taken into account.
Hence, the central position of the line is given here by u0 − uLOS.
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ηI (u) = ηI (−u),
ηQ(u) = ηQ(−u),
ηU (u) = ηU (−u),
ηV (u) = −ηV (−u),
ρQ(u) = −ρQ(−u),
ρU (u) = −ρU (−u),
ρV (u) = ρV (−u).

(8.16)

These symmetry properties do not occur by chance, but are a direct consequence
of Eqs (8.12), (8.13), (8.14), and (8.15). In fact, Eq. (8.12) implies that

φr(u) = φ−1(u) = φ+1(−u) = φb(−u), (8.17)

and Eq. (8.13) that

ψr(u) = ψ−1(u) = −ψ+1(−u) = −ψb(−u). (8.18)

Therefore,

φb(u) + φr(u) = φr(−u) + φb(−u),
ψr(u) − ψb(u) = −ψb(−u) + ψr(−u),

(8.19)

and

φr(u) − φb(u) = φb(−u) − φr(−u),
ψb(u) + ψr(u) = −ψr(−u) − φb(−u).

(8.20)

These two last relationships, together with Eqs (8.14) and (8.15), readily give the
expressions (8.16).

8.2 LS coupling

The simple Lorentz model of the electron is able to explain only the shape of
Zeeman triplet profiles. Experience, however, reveals a large number of Zeeman
multiplets for which classical physics can provide no explanation. A quantum-
mechanical treatment is therefore mandatory. We summarize such a treatment here,
although details of the rigorous theory are beyond the scope of this book. Let us
start to describe the model atom by finding those quantum observables that provide
the right framework for evaluating the energy jumps associated with the atomic
transitions that produce spectral lines.

As in classical mechanics, the total angular momentum of an n-particle system
with respect to a fixed point in space is a constant of the motion in the absence
of external forces. This is not, of course, the case for individual angular momenta
because of internal forces (interactions) among the particles. Such internal inter-
actions induce transfer of angular momentum from one particle to another. It is
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therefore important to know the total angular momentum of the system in order to
find the system eigenstates. The addition of individual angular momenta, however,
cannot be made in just one way. Consider an atom with n electrons, each with an
orbital angular momentum li and with a spin angular momentum si . The angular
momenta are assumed to be calculated with respect to the central position of the
(infinitely) massive nucleus, which is at rest. The description of the system is dif-
ferent if one first adds li and si to get ji and then all the ji ’s than if one proceeds by
adding first all the li ’s on the one hand, all the si ’s on the other, and then calculat-
ing the sum of both. An ordering must then be chosen that reflects as accurately
as possible the various degrees of importance or strengths of the different internal
interactions.

In our atomic system we can distinguish three main interactions. The Coulom-
bic repulsion between every two electrons certainly couples their individual orbital
angular momenta. The spin–spin interaction among individual electrons, owing
to spin statistics, couples individual spin angular momenta. The spin–orbit inter-
action, owing to the magnetic field “seen” by the electron that moves in the elec-
trostatic electric field of the nucleus (a special-relativity effect), couples the orbital
with the individual spin angular momenta. Assuming the relative strengths of these
three interactions to be in that order, that is, assuming that the Coulomb interac-
tion is the most important, it seems reasonable to proceed by first evaluating a total
orbital angular momentum,

L ≡
n∑

i=1

li , (8.21)

then a total spin angular momentum,

S ≡
n∑

i=1

si , (8.22)

and finally the total angular momentum,

J ≡ L + S. (8.23)

This coupling scheme is known as the LS or Russell–Saunders coupling and
is the one we shall use hereafter. It is a simple coupling scheme because it per-
mits the same magnetic perturbation to the system Hamiltonian as that of a one-
electron system. It is also the most extensively used in astrophysics. In several
cases (in particular for neutral iron lines of high excitation potential) LS coupling
fails and it becomes necessary to resort to another coupling scheme. Nevertheless,
the differences among the results of the various coupling schemes are more of a
quantitative than a qualitative character and the basic physics remains almost the
same.
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If the atomic conditions are close to those of LS coupling, the observables L2, S2,
J2, and Jz turn out to form a complete set of commuting operators, so that their as-
sociated quantum numbers l, s, j , and m, respectively, are good quantum numbers
and states |ls jm〉 characterized by them are eigenvectors of all four observables:

L2|ls jm〉 = h̄2 l(l + 1) |ls jm〉,
S2|ls jm〉 = h̄2 s(s + 1) |ls jm〉,
J2|ls jm〉 = h̄2 j ( j + 1) |ls jm〉,
Jz|ls jm〉 = h̄ m |ls jm〉

(8.24)

where h̄ is Planck’s constant, h, divided by 2π .
All these quantum states are also energy eigenstates because, in the absence

of an external field, the Hamiltonian, H0, also commutes with the total angular
momentum as a consequence of its rotational invariance. Remarkably, all quantum
states with quantum number, j , have the same eigenvalue, E j ,

H0 |ls jm〉 = E j |ls jm〉, (8.25)

regardless of m. We say that the state is (2 j + 1)-fold degenerate, or that the
energy level has 2 j + 1 sub-levels each characterized by the m quantum number
(m = − j,− j + 1, . . . , 0, . . . , j − 1, j).

8.3 The Zeeman effect

If an external magnetic field is applied to the system, a new Hamiltonian term
must be added to H0 to account for the interaction energy between the atom and
B. Assume that this new term is just a small perturbation to the energy levels
of the atom in the absence of the magnetic field. That is, the matrix elements of
the new term, HB , are supposed to be small when compared with those of H0. It
is then necessary just to evaluate those HB matrix elements and add them to the
eigenvalues of the unperturbed system.

If the magnetic field is homogeneous within the spatial domain of atomic dimen-
sions, the magnetic Hamiltonian is given by

HB = µ · B + O(B2), (8.26)

where µ is the atom’s intrinsic magnetic moment†

µ = µ0(J + S) (8.27)

and the term O(B2) is the so-called diamagnetic term (of the order of B2, but not

† We assume that the spin gyromagnetic ratio is gs = 2. In fact, experimental measurements and quantum
electrodynamics give gs = 2 [1 + α/π + O(α/π)2] ) 2.0023192, where α is the fine structure constant.
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explicitly written), which is perfectly negligible for our purposes when dealing with
small enough magnetic field strengths like those usually produced in the laboratory
or found in the Sun and most stars.†

The quantity µ0 is the Bohr magneton,

µ0 ≡ e0h̄

2mc
= hνL

B
= 9.27 × 10−21 erg G−1. (8.28)

The diagonal terms of HB turn out to be

〈ls jm|HB |ls jm〉 = mgµ0 B = mg hνL, (8.29)

where g is the Landé factor of the level. In LS coupling, the Landé factor is given
by

gL S = 3

2
+ s(s + 1) − l(l + 1)

2 j ( j + 1)
(8.30)

when j �= 0. Note that when j = 0 the Landé factor loses its meaning since m = 0
and the magnetic perturbation is zero.

The non-diagonal terms are not zero, however. HB is diagonal for all quantum
numbers except for j . The total angular momentum is no longer an invariant of the
motion, although Jz is still invariant.

〈ls jm|HB |l ′s ′ j ′m ′〉 = −δlsm j−1,l ′s′m′ j ′

×
[
( j2 − m2)( j + l + s + 1)( j + l − s)( j + s − l)(l + s − j + 1)

4 j2(2 j − 1)(2 j + 1)

]
hνL.

(8.31)

Fortunately, these non-diagonal terms are negligible with respect to the diagonal
ones for the range of weak magnetic fields we are dealing with, so that we can still
consider J as an approximate motion invariant and the states |ls jm〉 as eigenvectors
of the Hamiltonian:

(H0 + HB) |ls jm〉 = (E j + mg hνL) |ls jm〉. (8.32)

Therefore, the degeneracy of the energy level j has been broken up by the
presence of the magnetic field into 2 j + 1 components whose shifts in frequency
(energy) are proportional to the (magnetic) quantum number m and to the Larmor
frequency, νL (see Fig. 8.3). The adjective “magnetic” applied to quantum number
m comes from the customary selection of the third component of the total angular
momentum along the magnetic field direction. Hence, the Jz eigenvalue turns out

† Very strong magnetic fields have been reported on white dwarfs and pulsars, for which the diamagnetic term
might be needed. The order of magnitude of O(B2) with respect to µ . B is the same as that of the latter
(paramagnetic term) with respect to the unperturbed Hamiltonian, H0.
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Fig. 8.3. A level with quantum number j = 3 is split in the presence of a magnetic field
into seven sub-levels, each shifted proportionally to their magnetic quantum number, m.

to be the projection of the total angular momentum in the magnetic field direc-
tion. Note that the proportionality coefficient, the Landé factor, has been writ-
ten without the LS subscript. This makes the result more general since, when LS
coupling is not a suitable scheme, Landé factors can be calculated within other
coupling schemes or even be determined empirically from laboratory experiments
(see later).

8.3.1 Allowed atomic transitions

We understand the formation of spectral lines as a consequence of atomic transi-
tions between two levels l (for lower) and u (for upper) whose energies are El < Eu

with an ensuing absorption or emission of a photon. With this convention, a tran-
sition from the upper to the lower level is an emission line whereas a transition
from the lower to the upper level is an absorption line. Either in the absence or in
the presence of a magnetic field, conservation of angular momentum demands that
Ju = Jl + Jγ . Since the photon has jγ = 1, according to the quantum-mechanical
rule for addition of angular momenta,

� j ≡ ju − jl = 0, ±1 (8.33)

except for the case

ju = jl = 0,

which is forbidden.
According to Eq. (8.32), when a magnetic field is present the level energies

depend not only on j but on m as well. So what was a single line between two
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degenerate levels can now split into components each shifted in frequency with
respect to the original position (in the absence of the magnetic field) by

�νB = (mugu − ml gl) νL, (8.34)

or shifted in wavelength by

�λB = (ml gl − mugu) λB, (8.35)

where λB was defined in Eq. (8.9). These shifts are usually called Zeeman splittings
and it is customary to measure them in Lorentz units, that is, the shift is simply
evaluated as �λB/λB .

Now the questions arise as to how many of the possible transitions represent
physically allowed transitions and what their polarization states are. The answers
are in fact very easy and again come from the conservation of angular momentum.

The only three possible values for the photon helicity (the equivalent to the mag-
netic quantum number mγ ) in the atomic reference system are 0 and ±1. These
three values correspond to linearly polarized photons in the B direction (mγ = 0),
and to right-handed (mγ = −1) and left-handed (mγ = +1) circularly polarized
radiation in a plane perpendicular to B. Therefore, there are just three possibilities
for allowed jumps of the magnetic quantum number between the two levels of a
transition, namely,

�m ≡ mu − ml = 0, ±1. (8.36)

Equations (8.33) and (8.36) are known as the selection rules for electric dipole
transitions and, as a matter of fact, can be rigorously derived within the quantum-
mechanical formalism. Other selection rules apply to different transition types
(magnetic dipole, electric quadrupole, etc.) and new rules may be added to electric
dipole transitions in strict LS coupling conditions. Nonetheless, these two rules,
Eqs (8.33) and (8.36), provide results that are valid even when the atomic condi-
tions are far from those for LS coupling. We will therefore not discuss selection
rules further.

8.3.2 The Zeeman pattern

It can readily be understood that these three values of �m correspond to the three
values of index α of Section 8.1 and Chapters 6 and 7. Then we can make the
correspondence between the so-called π transitions (�m = 0) and the normalized
absorption and dispersion profiles φp and ψp; between the so-called σb transitions
(�m = +1) and the profiles φb and ψb; and between the so-called σr transitions
(�m = −1) and the profiles φr and ψr. The considerations of propagation of ellip-
tically polarized components summarized in Fig. 8.2 are still valid. Nevertheless,
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Fig. 8.4. What was a single line in the absence of a magnetic field is split into a pattern of
(2 jmin + 1) π components, ( ju + jl ) σb components, and ( ju + jl ) σr components.

a number of differences between this general development and that of a normal
Zeeman triplet are worth noting:

(1) The number of components is not always three. A pattern of several com-
ponents appears (see Fig. 8.4). Classical theory (i.e., Lorentz’s model) was
only able to explain a triplet whose Zeeman splitting is unity (in Lorentz
units). Such a triplet was called a “normal” Zeeman pattern and any other
was labeled “anomalous”, hence the frequent references to the normal and
anomalous Zeeman effects. Our selection rules indicate, however, that the
adjective normal refers mostly to the exception rather than to the rule. As
a matter of fact, Eqs (8.33), (8.36), and (8.34) or (8.35) explain that a nor-
mal Zeeman pattern can be produced between two levels of total angular
momentum 0 and 1, the latter having a Landé factor of unity. Otherwise,
the pattern is said to be anomalous. If the total angular momenta are 0
and 1 but the latter has a Landé factor different from unity, a triplet is pro-
duced as well but with a different splitting. Another interesting case for
which a triplet is obtained is that of the so-called pseudo-triplet: the two
total angular momenta can have any allowed values but the Landé factors
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of both levels are the same. In such a case (gu = gl = g), Eq. (8.35)
becomes

�λB

λB
= g(ml − mu)

and only three Zeeman components appear. An example of a pseudo-triplet
is the transition 3 P2—5 D1, which has three π components located at zero,
three σr components located at 1.5 Lorentz units, and three σb components
located at −1.5 Lorentz units.

(2) The selection rules clearly indicate that if we call

jmin ≡ min { ju, jl}, (8.37)

then there are necessarily

• (2 jmin + 1) π transitions (�m = 0),
• ( ju + jl) σb transitions (�m = +1),
• ( ju + jl) σr transitions (�m = −1).

Thus, it is evident that from a well-resolved Zeeman pattern (in the labo-
ratory) we can measure the total angular momenta of the two levels in-
volved, although no indication is obtained about which of them corres-
ponds to the upper level and which to the lower level. This is not much
of a problem because remarkable symmetry properties exist that imply the
same Zeeman pattern if one interchanges upper and lower levels. An ex-
ample Grotrian diagram of a Zeeman pattern between two levels of jl = 2
and ju = 3 can be seen in Fig. 8.4.

(3) Both the π and the σ patterns are symmetric about the central original
position of the line in the absence of magnetic fields.

The wavelength Zeeman splitting in Lorentz units is,

(a) for π transitions (ml = mu ≡ m),
�λB

λB
= m (gl − gu), (8.38)

(b) for σb transitions (mu = ml + 1),

�λB

λB
= ml (gl − gu) − gu = mu (gl − gu) − gl, (8.39)

(c) and for σr transitions (mu = ml − 1),

�λB

λB
= ml (gl − gu) + gu = mu (gl − gu) + gl . (8.40)

For every π transition with m �= 0 there is another with m ′ = −m whose
splitting is the opposite. Therefore, the π spectrum is symmetric about
zero.
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For every σb transition with magnetic quantum number ml there is a σr

transition with m ′
l = −ml and vice versa. Hence, Eqs (8.39) and (8.40)

imply that every σ component has a symmetric counterpart with respect to
the central position.

(4) From Eqs (8.38), (8.39), and (8.40), it is evident that the separation, d, be-
tween two adjacent Zeeman components of both the π spectrum and either
half (σb or σr) of the σ spectrum is

d = |gu − gl |. (8.41)

Let us consider separately the two cases � j = 0 and |� j | = 1. When
ju = jl = j , the magnetic quantum number of the upper level runs from
− j + 1 to j for the σb transitions and from − j to j − 1 for the σr transi-
tions. According to Eqs (8.39) and (8.40), the mid-points of the two halves
of the σ spectrum are located at −(gu + gl)/2 and at (gu + gl)/2. Hence,
the distance, dσ , between such mid-points is

dσ = gu + gl . (8.42)

When |� j | = 1, it is convenient to write Eqs (8.39) and (8.40) in terms of
mmin, gmin, mmax, and gmax, where the subscripts now refer to the level with
smaller or greater j quantum number. It is easy to see that, in this case,
mmin runs from − jmin to jmin for both the σb and the σr transitions, so that
the distance between the mid-points of the σ patterns is

dσ = 2gmax. (8.43)

All three results taken together allow us to determine the two Landé fac-
tors empirically. This turns out to be of great help especially for lines that
are formed in conditions far from LS coupling. In any case, empirically
measured Landé factors may help in discovering errors or discrepancies
between lines that have previously been assumed in LS coupling (Landi
Degl’Innocenti, 1982; Stenflo et al., 1984; Solanki and Stenflo, 1985).

(5) The Landé factor for LS coupling (8.30) may be negative. This circumstance
heralds the possibility that, eventually, some σb components may be shifted
to the red and the symmetric σr components to the blue. This is a com-
pletely new effect that was not foreseen in the Lorentz model. Moreover,
this is not a particular feature of LS coupling but a general result that can be
understood better from Eqs (8.39) and (8.40), which are valid for all atomic
coupling conditions. Consider, for example, Eq. (8.39) as if it represents a
straight line: the Zeeman splitting takes different (discrete) values along a
straight line of slope gl − gu and offset −gu depending on the values of ml .
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Such a straight line crosses �λB/λB = 0 at the point

m∗ = g

gl − gu
.

If gu > 0 and m∗ is outside the allowed interval for ml , then all σb Zeeman
splittings will be negative (and all σr Zeeman splittings will be positive)
as one would expect. Otherwise, some components may display the oppo-
site splitting. The symmetry of the Zeeman pattern is not broken, however.
An example of such a Zeeman pattern is that of the Fe II (ionized iron)
line at 436.94 nm. Using the standard spectroscopic notation, the line is a
4 P1/2—4 F3/2 transition, so that sl = su = 1/2, ll = 1, lu = 3, jl = 1/2, and
ju = 3/2. In LS coupling, the Landé factors of the lower and the upper level
are gl = 8/3 and gu = 2/5. With these Landé factors, the Zeeman split-
tings of the two σb components are (in Lorentz units) −23/15 and 11/15:
one is shifted to the blue and the other to the red. This line seems not to
be LS coupled, but the actual qualitative behavior is the same (Solanki and
Stenflo, 1985).

8.3.3 Relative intensities of the Zeeman components

All we need to know for evaluating the general absorption and dispersion profiles
corresponding to a general (anomalous) Zeeman pattern is the relative strengths
of the various Zeeman components. These intensities are proportional to the tran-
sition probabilities between the sub-levels due to the action of the electric dipole
operator. If D is such an operator, the probabilities are proportional to the popu-
lation of the initial sub-level (say, the lower sub-level for absorption lines) and to
the square modulus of its matrix elements, |〈ls jm|D|l ′s ′ j ′m ′〉|2. In normal excita-
tion conditions, i.e., in thermodynamic equilibrium, all the sub-levels are equally
populated and the probabilities depend only on the quantum numbers involved.
(Population imbalances as well as coherences between the different sub-levels ap-
pear, for instance, when matter is illuminated by an anisotropic radiation field, as
in pure scattering processes.) Under our hypothesis of local thermodynamic equi-
librium we shall be assuming that no such population imbalances and coherences
apply to our atomic system. The strengths are then proportional to the above matrix
elements and are given by the quantities

Sα,i ≡ S̃α,i∑
i S̃α,i

, α = +1, 0,−1, or b, p, r, (8.44)

where the unnormalized strengths, S̃α,i , are given in Table 8.1. Note that a distinc-
tion is made between transitions for which � j = 0 and those for which � j = ±1.
The former have the total angular momentum of the upper level and its third
component as variables. The latter transitions have the minimum of the two total
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Table 8.1. Unnormalized strengths of Zeeman components

jmin S̃b,i S̃p,i S̃r,i

ju= jl
1
2 ( ju+mi )( ju−mi +1) m2

i
1
2 ( ju−mi )( ju+mi +1)

jl
1
2 ( jmin+mi +1)( jmin+mi +2) ( jmin+1)2−m2

i
1
2 ( jmin−mi +1)( jmin−mi +2)

ju
1
2 ( jmin−mi +1)( jmin−mi +2) ( jmin+1)2−m2

i
1
2 ( jmin+mi +1)( jmin+mi +2)

angular momenta and its third component as variables. The expressions corre-
sponding to blue and red components are interchanged when either the lower or
the upper total angular momentum is the minimum. The denominator of Eq. (8.44)
is a sum that must be extended to all Zeeman components having a jump in mag-
netic quantum number �m = mu − ml = α. According to the above description
of each Zeeman pattern, the normalization conditions are:

(a)
ju∑

mi =− ju+1

Sb,i =
ju∑

mi =− ju

Sp,i =
ju−1∑

mi =− ju

Sr,i = 1, (8.45)

for � j = 0 transitions, and
(b)

jmin∑
mi =− jmin

Sb,i =
jmin∑

mi =− jmin

Sp,i =
jmin∑

mi =− jmin

Sr,i = 1, (8.46)

for � j = ±1 transitions.

Some examples of different Zeeman patterns are displayed in Fig. 8.5. The
graphical convention used is that π components point upwards whereas σ com-
ponents point downwards. From left to right and from top to bottom, the various
Zeeman patterns correspond to the following transitions:† 5 D0—7 D1, 5 D2—7 D3,
3 P2—5 P1, 4 F5/2—4 F3/2, 6S5/2—4 D5/2, and 4 P1/2—4 F3/2. Note that the first is a
pure (anomalous) triplet and that the last is our example of Section 8.3.2 where
one of the σb components (that closest to zero) is shifted to the red and one of the
σr components (that closest to zero) is shifted to the blue.

8.4 The elements of the propagation matrix

The results of Section 8.3 provide a complete picture of what happens with mat-
ter and radiation when a spectral line is formed in the presence of a magnetic

† The atomic levels are designated with the standard spectroscopic notation 2s+1l2 j+1. The values of the orbital
quantum number l are S for 0, P for 1, D for 2, F for 3, etc.
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Fig. 8.5. Some examples of Zeeman patterns.

field. Each individual Zeeman component contributes to the total absorption and
dispersion effects so that the elements of the propagation matrix are made up
of sums of such contributions. According to Eqs (8.38), (8.39), and (8.40), the
Zeeman splittings of the individual components can be written in compact
form as

�λB,α,i = [ml,i (gl − gu) − αgu] λB (8.47)
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or

�νB,α,i = [αgu + ml,i (gu − gl)] νL, (8.48)

so that the reduced individual splittings are

uB,α,i = �νB,α,i

�νD
= −�λB,α,i

�λD
. (8.49)

Therefore, the matrix elements of K remain formally the same as in Eqs (8.14)
and (8.15), although the normalized profiles φα and ψα are now given by

φα = 1√
π

∑
i

Sα,i H(u0 + uB,α,i − uLOS, a) (8.50)

and

ψα = 1√
π

∑
i

Sα,i F(u0 + uB,α,i − uLOS, a). (8.51)

Again, the sums must be extended to all Zeeman components having �m =
mu − ml = α. The limits coincide with those of Eqs (8.45) and (8.46).

Figures 8.6 and 8.7 show two examples of the K matrix elements corresponding
to 3 P2—5 P1 (left, middle panel of Fig. 8.5) and 4 P1/2—4 F3/2 (right, bottom panel
of Fig. 8.5) transitions. For comparison with Fig. 8.1, the remaining parameters
are η0 = 10, a = 0.05, θ = π/4, and ϕ = π/6; λB/�λD = 2.4 (solid lines) and
1.2 (dashed lines). As for the normal triplet case, the larger B (�λB) or the central
wavelength, the more conspicuous the contributions of the individual components.
It is particularly interesting that all the matrix elements but ηI , which is always
positive, qualitatively change the global sign when they are calculated for one tran-
sition or the other. This behavior follows from the essential difference between
the two Zeeman patterns: remember that 4 P1/2—4 F3/2 transition is our example
of a pattern having one σb component (the strongest) shifted to the red and one σr

component (the strongest) shifted to the blue.
Note that the symmetry properties of every Zeeman pattern ensure that the sym-

metry relationships (8.16), obtained for the elements of the propagation matrix in
the case of a triplet, hold generally.

8.4.1 The effective Zeeman triplet

For some applications, it may be convenient to use an approximation consisting
in the substitution of the actual Zeeman pattern of a given spectral line by an
“effective” Zeeman triplet. As we shall see, the usefulness of this approximation
depends on the strength of the magnetic field and on the particular Zeeman pattern.
However, the approximation stresses some of the concepts learnt about the general
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Fig. 8.6. Propagation matrix elements of the 3 P2—5 P1 transition (see text for parameters).

Zeeman pattern and, most importantly, leads to the definition of the effective Landé
factor of the line, a parameter of practical relevance.

Let us define

gα,i ≡ αgu + ml,i (gu − gl). (8.52)

The reduced splitting of each individual component [Eq. (8.49)] can then be written
as

uB,α,i = gα,i uB, (8.53)
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Fig. 8.7. Propagation matrix elements of the 4 P1/2—4 F3/2 transition (see text for
parameters).

where uB coincides with the splitting for a normal Zeeman triplet [Eq. (8.11)],
that is,

uB = νL

�νD
= λB

�λD
.

We call gα,i the Landé factor of the individual transition.
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Consider now each of the individual Voigt and Faraday–Voigt functions as Taylor
expansions around u0 − uLOS:

H(u0 + uB,α,i − uLOS, a) =
∞∑

k=0

uk
B

k!
gk
α,i

dk

duk
0

H(u0 − uLOS, a), (8.54)

F(u0 + uB,α,i − uLOS, a) =
∞∑

k=0

uk
B

k!
gk
α,i

dk

duk
0

F(u0 − uLOS, a). (8.55)

Substituting Eqs (8.54) and (8.55) into Eqs (8.50) and (8.51), we obtain

φα = 1√
π

∞∑
k=0

ḡα,k
uk

B

k!

dk

duk
0

H(u0 − uLOS, a) (8.56)

and

ψα = 1√
π

∞∑
k=0

ḡα,k
uk

B

k!

dk

duk
0

F(u0 − uLOS, a), (8.57)

where

ḡα,k ≡
∑

i

Sα,i g
k
α,i ; (8.58)

that is, ḡα,k is the barycenter of the k-th powers of the individual-transition Landé
factors. Since Sα,i and gα,i depend only on quantum numbers, the barycenters can
be rigorously calculated for any desired order k.

The first-order approximation turns out to be particularly interesting. Let us then
truncate the Taylor expansions up to k = 1. From the results of Sections 8.3.2 and
8.3.3 concerning the splittings and strengths of the general Zeeman pattern, it is
easy to deduce that

ḡα,0 = 1 (8.59)

because it is just the sum of the normalized strengths [Eqs (8.45) and (8.46)], and
that

ḡp,1 =
jmin∑

mi =− jmin

Sp,i gp,i = 0 (8.60)

because the π spectrum is symmetric about zero. The quantum-mechanical calcu-
lation of ḡ±1,1 yields

ḡb,1 = −ḡr,1 ≡ geff = 1

2
(gu − gl)+ 1

4
(gu − gl)[ ju( ju + 1)− jl( jl + 1)]. (8.61)

The new parameter geff is called the effective Landé factor of the spectral line.
Note that its expression is invariant under interchange of the upper and lower levels,
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and that it is independent of coupling schemes because so are gu and gl . If the latter
are calculated within a given coupling scheme (e.g., LS coupling) the effective
Landé factor can be evaluated theoretically and confronted with observations. As a
matter of fact, the Sun has been used as an atomic physics laboratory for checking
the validity of LS coupling of a number of spectral lines (Landi Degl’Innocenti,
1982; Stenflo et al., 1984; Solanki and Stenflo, 1985).

Thus, to a first-order approximation, the normalized absorption and dispersion
profiles look like

φp ) 1√
π

H(u0 − uLOS, a),

φb ) 1√
π

[H(u0 − uLOS, a) + geff uB
d

du0
H(u0 − uLOS, a)],

φr ) 1√
π

[H(u0 − uLOS, a) − geff uB
d

du0
H(u0 − uLOS, a)],

(8.62)

and

ψp ) 1√
π

F(u0 − uLOS, a),

ψb ) 1√
π

[F(u0 − uLOS, a) + geff uB
d

du0
F(u0 − uLOS, a)],

ψr ) 1√
π

[F(u0 − uLOS, a) − geff uB
d

du0
F(u0 − uLOS, a)].

(8.63)

In a more compact form,

φα ) 1√
π

H(u0 + αgeff uB − uLOS, a), (8.64)

and

ψα ) 1√
π

F(u0 + αgeff uB − uLOS, a), (8.65)

that is, the profiles are approximated by those of an effective triplet whose splitting
is that of the normal triplet times the effective Landé factor. The usefulness of the
approximation depends on the magnetic field strength, on the central wavelength
of the line, and on the particular Zeeman pattern. The first two dependences are
obvious: as long as B or λ0 are small enough, the splittings are small and the first-
order approximation may be accurate enough. The influence of the Zeeman pattern
is easy to understand as well: one just need compare the approximation accuracy
for different Zeeman patterns. Certainly, the effective triplet is an exact description
for triplets, no matter what the splitting. Nevertheless, given a field strength and a
central wavelength, the approximation is not as good for lines with π and σ compo-
nents at interlaced positions as for those other having the σb, π , and σr spectra well
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Fig. 8.8. Actual propagation matrix elements of the 5 D2—7 D3 transition (solid lines) and
those for its effective triplet (dashed lines).

separated from each other. As an example, Figs 8.8 and 8.9 show comparisons be-
tween the actual K matrix elements and those of the corresponding effective triplet
for the 5 D2—7 D3 (right, top panel of Fig. 8.5) and 3 P2—5 P1 (left, middle panel of
Fig. 8.5) transitions. The parameters are the same as for Figs 8.6 and 8.7; specifi-
cally, uB = 2.4. While the effective triplet is a reasonable approximation for the
first transition, it significantly fails for the second.
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Fig. 8.9. Actual propagation matrix elements of the 3 P2—5 P1 transition (solid lines) and
those for its effective triplet (dashed lines).

Despite all the drawbacks, the effective Landé factor provides a “thumb-nail”
sketch of the magnetic sensitivity of a given spectral line: the larger geff, the larger
the splitting. Hence, spectral lines with geff = 0 are unaffected by the presence of a
magnetic field. Such lines are often used, for example, to study the thermodynamic
and dynamic properties of magnetic atmospheres without any perturbation in the
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diagnostic due to B.† It is also worth observing that there are lines for which
geff < 0, in very much the same way as the level Landé factors can be negative.

8.5 The RTE in the presence of a magnetic field

Let us recapitulate at this point what we have learnt so far about the propagation of
light through an atomic vapor permeated by a magnetic field. We first summarize
the many hypotheses assumed in their order of appearance:

(1) Continuum radiation is unpolarized. In other words, the medium is as-
sumed to be isotropic as far as continuum-formation processes are con-
cerned (Section 6.3).

(2) The distribution of thermal motion velocities is assumed to be Maxwellian,
with a Doppler width that eventually includes a microturbulence velocity
(Section 6.4).

(3) Absorption processes are assumed to be linear, invariant against transla-
tions of the variable, and continuous processes. This assumption is the basis
for dealing with line broadening and Doppler shifting through convolutions
(Sections 6.4 and 6.5).

(4) The material properties are constant in planes perpendicular to a given
direction. The medium is said to be stratified or, in astrophysical terms,
plane–parallel (introduction to Chapter 7).

(5) The absorptive, dispersive, and emissive properties of the medium are in-
dependent of the light beam Stokes vector (introduction to Chapter 7).

(6) The radiation field is independent of time (introduction to Chapter 7).
(7) The effects of a refractive index gradient on the electromagnetic wave equa-

tion are ignored (introduction to Chapter 7).
(8) All thermodynamic properties of matter are assumed to be governed by

thermodynamic equilibrium equations at the local temperatures and densi-
ties (LTE hypothesis; Section 7.5).

(9) Scattering takes place in conditions of complete redistribution so that no
correlation exists between the frequencies of the incoming and scattered
photons (Section 7.5).

(10) All Zeeman sub-levels are equally populated and no coherences exist among
them (Section 8.3.3).

With all these assumptions, the transport of radiative energy through the medium
is governed by the RTE,

dI
dτc

= K (I − S), (8.66)

† The diagnostics provided by the Stokes profiles are discussed in Chapter 10.
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where I = (I, Q,U, V )T is the light beam Stokes vector, τc is the continuum
optical depth defined in Eq. (7.41), S = (Bν, 0, 0, 0)T is the source function vector
(Bν is the Planck function), and K is the propagation matrix, whose elements are
defined in Eqs (7.44) and (7.45), the normalized absorption and dispersion profiles
being given by Eqs (8.50) and (8.51).

It is to be observed that all the thermodynamic, dynamic, magnetic, atomic,
and geometric medium properties are included in the propagation matrix and in
the source function vector. The optical depth scale (the natural length for radia-
tive transfer) is also dependent on the material properties through χcont. Thermo-
dynamics enters the game through χcont, η0 [Eq. (7.40)], and Bν . The latter de-
pends only on the local temperature, T . In their turn, χcont and η0 depend on
two thermodynamic variables like T and the density, ρ, or the electron pressure,
pe, through the Boltzmann and Saha equilibrium population equations, which also
involve the abundance of the various ionic species constituting the medium. Ther-
modynamics also influences the Doppler width and the line damping parameter.
The macroscopic motions of the atoms have an influence on the individual Zeeman
component profile shapes through Doppler shifts. Atomic parameters like the os-
cillator strength or quantum numbers are relevant to the evaluation of η0, φα, and
ψα. Last but not least, the vector magnetic field determines to a large extent the K
matrix element values.

In summary, the radiative transfer equation, being a linear differential equation,
contains implicitly all the non-linear dependences of the Stokes spectrum on the
medium properties. These dependences are non-linear because so are those of τc,
K, and S. The intricacy of such dependences may include coupling between dy-
namical and magnetic parameters with thermodynamic parameters.† The main
astrophysical problem, that is, the diagnostics of the properties of the medium
based on observations of the Stokes spectrum, turns out to be a formidable prob-
lem. Nevertheless, considerable progress has been achieved, as we shall see in the
following chapters.
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9

Solving the radiative transfer equation

. . . lo que pudiera turbarle en el deliquio sin nombre que gozaba en presencia de Ana, eso
aborrecı́a; lo que pudiera traer una solución al terrible conflicto, cada vez más terrible,
de los sentidos enfrentados y de la eternidad pura de su pasión, eso amaba.

—Leopoldo Alas, Cları́n, 1885.

Whatever disturbed the nameless rapture that engrossed him in Ana’s presence he detested;
whatever could bring a solution to the ever more terrible conflict between his constrained
senses and the pure eternity of his passion he loved.

With the radiative transfer equation for polarized light to hand, we shall proceed
to find solutions and to exploit them both, the equation and its solutions, in order
to obtain information about the medium. This chapter is devoted to solutions of
the RTE and to the first and simplest diagnostics one can obtain from the observed
Stokes profiles. The main emphasis is on concepts rather than numerical details.
The latter may be found in the literature (some of the most recent papers are rec-
ommended in the bibliography) and in fact are still in continuous evolution and
debate. Most of the concepts we describe in this chapter, however, may be said to
be well founded nowadays and will help the reader in understanding the topic.

9.1 The model atmosphere

After the summary discussions of Section 8.5, we understand that the medium is
usually specified by a number of physical parameters as a function of the geometri-
cal distance, which determines the local value of the optical depth, the propagation
matrix, and the source function vector. Using astrophysical terminology, we shall
call the set of such parameters the model atmosphere, although the medium may
be a gas cell in the laboratory. Typically, the model atmosphere contains two ther-
modynamic variables such as the temperature, T , and the electron pressure, pe,

149
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the microturbulence velocity, ξmic (which may not be needed in the laboratory; see
Section 6.4), the line-of-sight velocity, vLOS (that is, the component of the material
velocity in the propagation direction),† and the three components of the magnetic
field vector, B (the strength), θ (the inclination with respect to the propagation
direction), and ϕ (the azimuth with respect to a reference direction, usually, the
Stokes Q positive direction). The model atmosphere can then be formally repre-
sented by a vector function,

x(τc) ≡ [T (τc), pe(τc), ξmic(τc), vLOS(τc), B(τc), θ(τc), ϕ(τc), ξmac(τc)] , (9.1)

where the last parameter is called the macroturbulence velocity, a new ad hoc
astrophysical parameter that accounts for possible motions on scales larger than
the mean free path of photons, but that remain spatially unresolved in observations
(see Section 9.2.4).

9.2 The formal solution

The propagation matrix, K, and the source function vector, S, are thus functions of
the optical depth through x(τc); explicitly, K [x(τc)] and S [x(τc)]. Once we know
x(τc), we know K(τc) and S(τc), and we can proceed to solve the RTE,

dI
dτc

= K (I − S), (9.2)

provided we have an initial (or boundary) condition.

9.2.1 Symmetry properties of the solution

Prior to solving the RTE, we can already find a very interesting property of the
solution; namely that in the absence of velocity gradients along the optical path the
Stokes profiles of every spectral line have definite symmetry properties: Stokes I ,
Q, and U are even functions of wavelength (or frequency) about λ0 (or ν0), and
Stokes V is an odd function of wavelength. To understand these properties, let us
recall the results on the symmetry of propagation matrix elements of Sections 8.1.1
and 8.4.

According to such results, a change of (λ − λ0) −→ (λ0 − λ) transforms the
propagation matrix to

K′′ =




ηI ηQ ηU −ηV

ηQ ηI ρV ρU

ηU −ρV ηI −ρQ

ηV −ρU ρQ ηI


 . (9.3)

† The astrophysical convention for velocities defines receding (redshifted) velocities as positive.
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Now, if there is no change of the LOS velocity throughout the atmosphere, this
is a constant modification of K when we are dealing with symmetric wavelengths
relative to the central position of the line.† Thus, if I(0; λ− λ0) is a solution of the
RTE, I(0; λ0 − λ) obeys the equation

d

dτc
I(0; λ0 − λ) = K′ [I(0; λ0 − λ) − S] (9.4)

and, necessarily,

I (0; λ0 − λ) = I (0; λ − λ0),

Q(0; λ0 − λ) = Q(0; λ − λ0),

U (0; λ0 − λ) = U (0; λ − λ0),

V (0; λ0 − λ) = −V (0; λ − λ0).

(9.5)

This is so because, from our hypotheses, the source function is assumed to be
constant within the wavelength span of a single spectral line, and the initial (or
boundary) condition is assumed to preserve the symmetries.

These remarkable symmetry properties have a further important consequence:
in the absence of velocity gradients there is no net circular polarization in a given
spectral line; in other words, the integral of Stokes V over the wavelength span,
W , of a line is zero: ∫

W
V (0; u) du = 0. (9.6)

Therefore, as soon as one detects a net circular polarization, a gradient of LOS
velocity with optical depth is known to be present in the medium.‡ Practice re-
veals situations in which the observed Stokes profiles may not follow the symme-
try conditions (9.5) but where condition (9.6) is fulfilled. In such cases, one should
conclude that there is a lack of spatial resolution, and that the observed signal is a
sum of individual signals, each coming from a medium where the Stokes profiles
may be different and even shifted in wavelength owing to material velocities, but
where no gradient of velocity is present:§ every individual set of Stokes profiles
verifies conditions (9.5) so that condition (9.6) is automatically fulfilled; the sum
of such shifted profiles may be asymmetric [conditions (9.5) no longer hold], but
the integral of Stokes V cannot be different from zero.

† We understand that λ0 is already shifted by �λLOS.
‡ Recall that the possibility of circular polarization of the continuum is already discarded by hypothesis (see

Section 8.5).
§ It is important to note that these conclusions hold within the framework of our hypotheses. In particular, a

population imbalance between the upper and the lower levels of the transition might produce a net circular
polarization.
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9.2.2 The evolution operator

Let us consider the homogeneous equation

dIh

dτc
= K Ih, (9.7)

where Ih represents a solution of this homogeneous equation. Let O(τc, τ
′
c) be

a linear operator which gives the transformation of the homogeneous solution
between the two points at optical depths τ ′

c and τc:

Ih(τc) ≡ O(τc, τ
′
c)Ih(τ

′
c). (9.8)

O(τc, τ
′
c) is known as the evolution operator and obviously fulfils

O(τc, τc) = 11 (9.9)

and

O(τc, τ
′′
c ) = O(τc, τ

′
c)O(τ ′

c, τ
′′
c ). (9.10)

Hence, the variation of Ih when τc varies is given by

dIh(τc)

dτc
= dO(τc, τ

′
c)

dτc
Ih(τ

′
c). (9.11)

On the other hand, Eqs (9.7) and (9.8) imply that

dIh(τc)

dτc
= K(τc)O(τc, τ

′
c)Ih(τ

′
c). (9.12)

Now, comparing Eqs (9.11) and (9.12), we conclude that the evolution operator
must verify the following differential equation:

dO(τc, τ
′
c)

dτc
= K(τc)O(τc, τ

′
c). (9.13)

Since Ih(τc) is independent of τ ′
c, similar steps to those taken to obtain Eqs (9.11)

and (9.12), but now accounting for variations with respect to τ ′
c, give

dO(τc, τ
′
c)

dτ ′
c

= −O(τc, τ
′
c)K(τ ′

c). (9.14)

9.2.3 Solving the inhomogeneous equation

Now, we can use the evolution operator as an “integrating factor”. Let us multiply
the RTE [Eq. (9.2)] by O(τ ′

c, τc) to obtain

O(τ ′
c, τc)

dI
dτc

= O(τ ′
c, τc)K (I − S). (9.15)
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The left-hand side of Eq. (9.15) is

O(τ ′
c, τc)

dI
dτc

= d

dτc

[
O(τ ′

c, τc) I(τc)
] − dO(τ ′

c, τc)

dτc
I(τc), (9.16)

and using now Eq. (9.14), Eqs (9.15) and (9.16) give

d

dτc

[
O(τ ′

c, τc) I(τc)
] = −O(τ ′

c, τc)K(τc)S(τc), (9.17)

which, after integration with respect to optical depth between τ0 and τ1, results in

I(τ1) = O(τ1, τ0) I(τ0) −
∫ τ1

τ0

O(τ1, τc)K(τc)S(τc) dτc, (9.18)

where we have made use of Eq. (9.9). The first term on the right-hand side of
Eq. (9.18) gives us the Stokes parameters of the light that has streamed through
the medium (between τ0 and τ1) as if the medium were not emitting light (the
homogeneous solution); O describes such an evolution. The second term of the
equation provides the contribution from emission to the final Stokes parameters.
Note that emission is accounted for by K S. That emitted light in τc “evolves” up
to τ1 and is then “added”. A final remark is in order at this point: our adding of the
Stokes parameters implies that we are assuming the absence of coherences between
the light beams emitted at different points in the medium. Should these coherences
exist, the Stokes formalism would be inappropriate (see Section 3.4).

If we assume a semi-infinite medium, as is customary when considering stellar
atmospheres, we accept that the medium has an open external boundary where the
origin of optical depths is located (τ1 = 0; the observer’s position, in fact) and
an internal boundary where the material is so optically thick that the mathematical
limit τ0 −→ ∞ makes sense. For this type of medium, one often assumes that, in
the limit, no photon at the internal boundary may reach the external boundary , i.e.,

lim
τ0−→∞ O(0, τ0) I(τ0) = 0. (9.19)

We can then write the formal solution of the RTE as†

I(0) =
∫ ∞

0
O(0, τc)K(τc)S(τc) dτc. (9.20)

9.2.4 The action of macroturbulence on the Stokes profiles

Observed Stokes profiles are often wider than synthetic profiles of the same equiv-
alent width, that is, profiles that withdraw the same amount of electromagnetic en-
ergy from the continuum. This effect can be attributed to the presence of turbulent

† This formal solution of the RTE for polarized light was proposed for the first time by Landi Degl’Innocenti
and Landi Degl’Innocenti (1985); see also Landi Degl’Innocenti (1987).
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motions that remain unresolved within the spatial resolution element. The distri-
bution of material velocities certainly has an influence on the Stokes profiles. Such
an influence may be tailored at will if one assumes that the turbulence velocities
vary with depth through the atmosphere. This assumption may be of help to those
analytical techniques that are otherwise unable to reproduce the observed profiles.
However, macroturbulence (that is, turbulence on a scale larger than the mean free
path of photons) is mostly called on in an ad hoc manner, rather than on the basis
of actual physical reasoning. Thus, we shall make the conservative assumption‡
that macroturbulence is constant with depth and therefore acts as a convolution of
the Stokes profiles with a Gaussian distribution of velocities of width ξmac:

Gmac ≡ 1√
πξmac

e−
(
v2/ξ2

mac

)
. (9.21)

Note that Gmac is normalized in area, so that convolution will not change the
equivalent width of Stokes I . In other words, energy is preserved during the pro-
cess. It is convenient to consider Gmac as a distribution of wavelength displace-
ments. Following the same steps as in Section 6.4, the macroturbulence distribution
is

Gmac = 1√
πσmac

e−
[
(λ−λ0)

2/σ 2
mac

]
, (9.22)

where

σmac ≡ λ0ξmac

c
. (9.23)

This distribution is convolved with the Stokes spectrum to get the observed pro-
files

Iobs,i = Ii ∗ Gmac, (9.24)

where i = 1, 2, 3, 4 runs for all four Stokes parameters. Figure 9.1 illustrates
the effect of macroturbulence on the profiles. The Fe I line at 630.25 nm is syn-
thesized in the Harvard–Smithsonian Reference Atmosphere (HSRA; Gingerich
et al., 1971) to which a constant magnetic field vector has been added, without
macroturbulence (dashed lines) and with ξmac = 2 km s−1 (solid lines).

9.3 Actual (numerical) solutions of the RTE

The solution (9.20) of the RTE is called formal because it is indeed not a real
solution as long as the evolution operator is not known. Unfortunately, despite their
fairly simple appearance, Eqs (9.13) and (9.14) have no easy analytical solution in

‡ It is a conservative hypothesis in order not to enlarge artificially the number of free parameters in numerical
inferences (see Chapter 11).
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�

�

�

�

Fig. 9.1. Stokes profiles of the Fe I line at 630.25 nm in the HSRA model with a constant
magnetic field vector of B = 2000 G, θ = 45◦, and ϕ = 10◦, without macroturbulence
(dashed lines) and with a macroturbulence velocity of 2 km s−1(solid lines). The Stokes
profiles are normalized by the continuum intensity, Ic.

general. Only in particular instances can these equations be integrated analyti-
cally. In most instances, only numerical approaches to the evolution operator can
be found. We shall understand this by confronting the RTE for anisotropic media
(hence, for polarized light) with its particular case for isotropic media (hence,
where polarization can be forgotten and a scalar equation for the intensity can be
considered alone).† After the comparison we shall better realize one of the most
important characteristics of the polarized radiative transport, namely the needs for
matrix algebra and the difficulties that this algebra entails.

Consider an isotropic medium with a line-to-continuum absorption coefficient
ratio η0 and an absorption profile φ (both invariable for all directions) and a source
function that, in the LTE approximation, is given by the Planck function at the local
temperature. Through such a medium light propagates according to the equation

dI

dτc
= k(τc) [I (τc) − Bν(τc)] , (9.25)

where here k ≡ 1 + η0φ [see Eq. (7.46)].

† Recall, however, the discussion of Section 7.7: polarization can be forgotten only when light is initially
unpolarized.
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Repeating the same steps as those for the polarized case, one easily concludes
that the solution of the RTE is

I (0) =
∫ ∞

0
e− ∫ τc

0 k(t) dt k(τc) Bν(τc) dτc. (9.26)

Therefore, the “evolution operator” in this unpolarized case is an attenuation expo-
nential

e− ∫ τc
0 k(t) dt ,

which is nothing but a solution of the homogeneous equation. Thus, the evolu-
tion operator, O(0, τc), is a generalization of the attenuation exponential. Why
then does Eq. (9.13) have no simple analytical solution, and why is one unable to
extrapolate the scalar case to the vector case and say that

O(0, τc) = e− ∫ τc
0 K(t) dt ? (9.27)

The answer to this question is to be found in an important property of matrix
algebra that is different to real-number algebra: matrices do not commute in gen-
eral. In particular, the propagation matrix does not necessarily commute with its
integral over the optical path, [

K,

∫ τc

0
K(t)dt

]
�= 0, (9.28)

where the square brackets indicate the commutation operator

([A,B] ≡ AB − BA) .

Therefore, in general,

d

dτc
e− ∫ τc

0 K(t) dt �= −e− ∫ τc
0 K(t) dt K(τc), (9.29)

so that Eq. (9.14) does not hold. This is so because the exponential of a matrix is
to be understood as the result of a Taylor expansion:

eA ≡ 11 + A + 1

2!
A2 + 1

3!
A3 + . . . . (9.30)

Hence, if we call

L(τc) ≡
∫ τc

0
K(t) dt, (9.31)

then, in general,
d

dτc
Ln �= n K Ln−1 (9.32)

because if [K,L] �= 0 then [K,Lm] �= 0.
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In summary, only when the commutation condition,

[K,L] = KL − LK = 0, (9.33)

holds is the matrix exponential of Eq. (9.27) a valid expression for the evolution
operator. In such a case, the formal solution of the RTE becomes

I(0) =
∫ ∞

0
e− ∫ τc

0 K(t) dt K(τc)S(τc) dτc. (9.34)

Otherwise, numerical approaches must be found: the most general expressions
which have been obtained so far involve infinite series, which are not very easy
to handle in practice (see Landi Degl’Innocenti, 1987; López Ariste and Semel,
1999). A specific and simple case for which the commutation condition (9.33)
holds is that of a medium with a constant propagation matrix or, more generally,
when K(τc) = f (τc)K0, where K0 is constant and f is a scalar function of the
optical depth. This case will be further constrained later (Section 9.4.1) in order to
obtain an analytical solution to the RTE that may help in gaining an insight into the
problem.

We shall not enter here into the details of the various numerical solutions and re-
fer the interested reader to Landi Degl’Innocenti (1987), Bellot Rubio et al. (1998),
and Semel and López Ariste (1999). For our purposes, we shall assume that any
of these numerical solutions provides a “good” evolution operator and, thus, our
discussions can circumscribe the formal solution (9.20) just as if it were a true
analytical solution. Therefore, from now on we shall understand that, given the
stratification of atmospheric parameters, an (accurate enough) solution of the RTE
can be calculated. An example of such a solution, i.e., the spectrum of all four
Stokes parameters, for the Fe I line at 630.25 nm is shown in Fig. 9.2. The model
atmosphere, that is, the stratification of physical quantities, corresponding to that
solution is shown in Fig. 9.3. The temperature corresponds to a mean penum-
bral model by del Toro Iniesta et al. (1994); the electron pressure stratification is
compatible with a gas pressure stratification obeying the hydrostatic equilibrium
equation; the functional shape of the line-of-sight velocity of the material and of
the three components of the magnetic field are not meant to resemble any realistic
stratification; the microturbulence velocity is 0.6 km s−1and the macroturbulence
velocity is 0.75 km s−1. The profiles are normalized to the continuum of the quiet
Sun (HSRA).
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λ λ

Fig. 9.2. Stokes profiles of the Fe I line at 630.25 nm in the model atmosphere shown in
Fig. 9.3.

τ

ϑ φ

τ

Fig. 9.3. Model atmosphere where the Stokes profiles of Fig. 9.2 have been synthesized.

9.4 Simple solutions of the RTE

Let us assume that the stratification of physical quantities through the atmosphere
is such that the propagation matrix can be written as

K(τc) = K0 f (τc), (9.35)
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where K0 is constant (independent of the optical depth) and f is any scalar func-
tion of τc. Under this assumption, the integral, L, over the optical path of the
propagation matrix is

L(τc) = K0

∫ τc

0
f (t) dt, (9.36)

and the commutator between K and L becomes

[K,L] = K0

[
f (τc),

∫ τc

0
f (t) dt

]
= 0, (9.37)

because any two real numbers commute.
By simply applying the definition (9.30) for the exponential of a matrix and the

commutation condition (9.37), one can easily check that now

d

dτc
e−L = −e−LK (9.38)

and, hence, that the analytic expression (9.27) for the evolution operator holds.

9.4.1 The Milne–Eddington atmosphere

Consider now the simplest case among those for which Eq. (9.35) is valid, namely,
that medium where

K(τc) = K0. (9.39)

In such a case, the evolution operator simply reads

O(0, τc) = e−K0τc . (9.40)

Also, assume that the source function vector, S, depends linearly on optical
depth,

S ≡ S0 + S1τc = (S0 + S1τc)(1, 0, 0, 0)T, (9.41)

since we already know (see Section 7.5) that the source function is proportional to
(1, 0, 0, 0)T within the framework of our hypotheses.

A medium satisfying Eqs (9.39) and (9.41) is called in the astrophysical litera-
ture a Milne–Eddington atmosphere. In this type of atmosphere, the propagation
of polarized light is such that the formal solution becomes

I(0) =
∫ ∞

0
e−K0τcK0(S0 + S1τc) dτc, (9.42)

which can be integrated analytically by parts to yield

I(0) = S0 + K−1
0 S1. (9.43)
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Now, since the only non-zero element of both S0 and S1 is the first one, we only
need to calculate the first column of the inverse K−1

0 of the propagation matrix. The
explicit expression of all four Stokes profiles is then

I (0) = S0 + �−1ηI (η
2
I + ρ2

Q + ρ2
U + ρ2

V )S1,

Q(0) = −�−1
[
η2

IηQ + ηI (ηVρU − ηUρV ) + ρQ(ηQρQ + ηUρU + ηVρV )
]

S1,

U (0) = −�−1
[
η2

IηU + ηI (ηQρV − ηVρQ) + ρU (ηQρQ + ηUρU + ηVρV )
]

S1,

V (0) = −�−1
[
η2

IηV + ηI (ηUρQ − ηQρU ) + ρV (ηQρQ + ηUρU + ηVρV )
]

S1,

(9.44)
where � is the determinant of the propagation matrix; explicitly,

� = η2
I (η

2
I −η2

Q −η2
U −η2

V +ρ2
Q +ρ2

U +ρ2
V )− (ηQρQ +ηUρU +ηVρV )

2. (9.45)

The solution (9.44) of the RTE in a Milne–Eddington atmosphere is known as the
Unno–Rachkovsky solution and is very useful because of its analytical character.
Just by changing a few parameters we can get an approximate idea of how a given
spectral line is formed in different atmospheres or how various lines are formed in a
given atmosphere. Although the model may not be realistic (fairly large variations
with depth are expected in actual atmospheres), the Unno–Rachkovsky solution is
very helpful.

Let us recapitulate and find out which parameters must be kept constant through-
out the medium for the propagation matrix to remain independent of depth. This
is very simple since we just have to look at Eqs (8.14), (8.15), (8.50), and (8.51).
There, the explicit expressions of the K matrix elements are shown as a function of
the line-to-continuum absorption coefficient ratio, η0, the Doppler width of the line,
�λD, the damping parameter, a (in units of �λD), the central wavelength of the
line, and the three components (B, θ , and ϕ) of the magnetic field vector. Hence,
the whole model is specified by these seven parameters plus the two parameters
describing the source function, S0 and S1.

An example of the Unno–Rachkovsky solution is shown in Fig. 9.4, where the
Milne–Eddington parameters are η0 = 10, a = 0.05, uB = 2.4, θ = π/4, ϕ =
π/6, and S1/S0 = 4. The profiles are normalized to their local continuum.

9.4.2 Longitudinal magnetic field

Consider a magnetic atmosphere that is observed in the (constant) direction of B.
Since it is the magnetic field vector that establishes an optical anisotropy in the
medium, we are dealing with a case in which the light is propagating along the
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Fig. 9.4. Stokes profiles of a Zeeman triplet in a Milne–Eddington atmosphere of para-
meters η0 = 10, a = 0.05, u B = 2.4, θ = π/4, ϕ = π/6, and S1/S0 = 4. The abscissae
are expressed in the reduced wavelength variable defined in Eq. (6.50) [or the reduced
frequency of Eq. (6.49)].

optical axis and, therefore, the RTE is simplified (Section 7.8) to

d

dτc
(I ± V ) = (ηI ± ηV )(I ± V − Bν), (9.46)

where we have explicitly made the Planck function the source function.
We have now two uncoupled scalar equations that are formally identical to that

for Stokes I in the same atmosphere but in the absence of a magnetic field. In such
a case, we can write

dI

dτc
= (1 + η0φ)(I − Bν) (9.47)

independently of the other three Stokes parameters. In Eq. (9.47), η0 is, as usual,
the line-to-continuum absorption coefficient ratio and φ the (isotropic) absorption
profile. Now, when propagation is in the magnetic field direction, according to
Eqs (7.50) and (7.52),

ηI ± ηV = 1 + η0φ∓1, (9.48)

where an explicit distinction is made between right-handed and left-handed polar-
ized light.
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Fig. 9.5. I ± V profiles of a Zeeman triplet in a Milne–Eddington atmosphere.

Therefore, if in the absence of a magnetic field the solution of the RTE is

I (0) =
∫ ∞

0
e− ∫ τc

0 (1+η0φ)dτ ′
(1 + η0φ) Bν dτc, (9.49)

in the case of a longitudinal magnetic field we have

(I ± V )(0) =
∫ ∞

0
e− ∫ τc

0 (1+η0φ∓1)dτ ′
(1 + η0φ∓1) Bν dτc. (9.50)

In the particular case of a Zeeman triplet, we already know that the sole differ-
ence between φ and φ−1 (or φ+1) is a wavelength shift: the absorption profiles are
identical (although scaled) but shifted to the blue or to the red depending on the
handedness of the polarization (Section 8.3.2). Therefore, the solutions for I ± V
in the longitudinal case are the same as those for I in the absence of B, but shifted
in wavelength, according to the Zeeman splittings (see Fig. 9.5).

9.5 Simple diagnostics

A few simple physical conclusions can be drawn from a glance at the Stokes pro-
files. A comparison of Figs 9.2 and 9.4 reveals several highly significant differ-
ences. First, the profiles of Fig. 9.2 are very asymmetric whereas those of Fig. 9.4
have definite symmetry properties: Stokes I , Q, and U are symmetric and Stokes
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V is antisymmetric with respect to the central wavelength of the line. Second,
the Stokes profiles of Fig. 9.4 have a continuum intensity equal to one whereas
those of Fig. 9.2 do not. Third, the Unno–Rachkovsky profiles are all shifted by
2�λD with respect to the original position of the line in the absence of a velocity
field.

These three differences have simple explanations which in fact offer valuable
information about the medium in which the Stokes profiles were formed. The dif-
ference in symmetry properties and, most importantly, the net circular polarization
of penumbral profiles respond to the presence of a velocity gradient with depth in
the penumbral model, whereas the Milne–Eddington one has a velocity along the
LOS that is constant with optical depth (see Section 9.2.1). Indeed, the shift of the
Unno–Rachkovsky profiles implies a mean or bulk velocity (along the LOS) of the
material approaching the observer: the shift is bluewards.

The continuum intensity of the penumbral profiles tells us that our spectral line
is formed in a medium which is cooler than the quiet Sun. Of course, a quantifi-
cation of such cooling requires further calculation but the information is there in
the profiles. Unfortunately, the Unno–Rachkovsky profiles have been normalized
to their local continuum so that any information of relative cooling or heating is
lost. We have stressed this circumstance because it is relatively customary among
observers to normalize the observed Stokes profiles to their local continuum. Such
a practice should be avoided in order to exploit to the maximum the information
about the medium carried by the Stokes profiles.

These are only a few very simple examples of the diagnostics that can be carried
out on the Stokes profiles. Of course, quantification of all the physical parame-
ters characterizing the medium through which light is traveling requires the more
detailed analysis and calculations that are discussed in the following chapters.
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10

Stokes spectrum diagnostics

Dixo mio Çid: “yo desto so pagado;
“quando agora son buenos, adelant serán preçiados.”

—Anonymous, approx. 1140.

‘With that I am well paid,’ said the Cid;
‘Those that are now worthy, shall henceforth be rewarded.’

The main problem in astrophysics is that of inferring the physical properties of
the medium from the observables: the Stokes spectrum. Unfortunately, no in situ
measurements can be made of the temperatures, densities, velocities, magnetic
fields, and other physical quantities to probe the astronomical object, or at least
that portion of the astronomical object where photons come from. Astrophysical
measurements are of the physical properties of the (polarized) radiation, not of the
celestial object itself. From these measurements, and with the help of some known
physics, the astronomer is challenged to infer the properties of the medium that
light has passed through. Certainly, we speak loosely when we use the same word
measurement for both the process of characterizing light and that of interpreting
the observed Stokes spectrum in terms of the medium properties: calibration is
neither as easy nor as accurate as in laboratory measurements. The only avail-
able “meter” is the RTE, which contains the relationship between the observable
(the Stokes spectrum) and the unknowns (the medium physical quantities). More
specifically, the link between the medium and the observable lies in the coefficients
of the RTE, namely, the propagation matrix and the source function vector. Since
simplifying assumptions and models are always necessary in order to particularize
both K and S, the results of the inference process depend on these assumptions and
models. For instance, one may be interested in measuring (inferring) the magnetic
field strength of a given region of the Sun, under the assumption that the field does

165
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not vary with height. The result will certainly not be the same as that arising from
the assumption that the magnetic field strength varies linearly with height. What-
ever the hypotheses are, the crucial problem is to determine the dependence of the
observable on the various physical quantities characterizing the medium; in other
words, to determine the diagnostic capabilities of the particular observable.

Measurements are sometimes not just a resolved portion of the spectrum but the
result of some operator acting on it. For instance, some magnetographs measure
the integral of Stokes V over a narrow region, and tunable birefringent filters pro-
vide narrow-band images across the wavelength span of a given line. We also need
to know the diagnostic capabilities of these measurements. Full spectral resolu-
tion will be assumed in what follows, however. By considering a well-resolved
Stokes spectrum, we are not losing generality; on the contrary, we are dealing
with the most general problem of finding the possible diagnostics from individual
wavelength samples. This aim will occupy us for most of this chapter. Consid-
eration of those other measurements involving several wavelength samples can be
made afterwards. In fact, we shall deal with that problem too in this chapter.

10.1 Probing the medium by scanning spectral lines

Light reaches the observer after having traveled through and interacted with the
medium. Photons are emitted at a given point and then absorbed and re-emitted (or
scattered) at another point in the medium. Since the distribution of energy (Stokes
I ) and the polarization state (Stokes Q/I , U/I , and V/I ) are known to vary across
the wavelength span of single spectral lines, it is conceivable that the different
photons at the various wavelengths are “formed” in different parts of the medium,
each with specific physical properties. If this conjecture is true (which, we assure
the reader, qualitatively it is) one could probe the optical path by simply “tuning”
into the different wavelength samples of the spectral line or by selecting several
lines for analysis. In order to understand this issue let us begin by considering an
isotropic medium, which will provide a perfect introduction of the concepts to be
applied later to anisotropic media.

10.1.1 The isotropic case

Assume that we are dealing, for instance, with a non-magnetized stellar atmo-
sphere. In this case, we already know that the solution of the RTE is

I (0) =
∫ ∞

0
e− ∫ τc

0 k(t) dt k(τc) S(τc) dτc, (10.1)

and that the evolution operator is the attenuation exponential (see Section 9.3). We
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Fig. 10.1. Attenuation exponential (dotted line), emission coefficient (solid line), and con-
tribution function (dashed line) of the Fe I line at 630.25 nm, at −11 pm from the line
center. Both the emission coefficient and the contribution function have been multiplied by
τc ln 10. Calculations have been made for a solar plage model without any magnetic field.

find fairly often in the astrophysical literature that log τc is used as the integration
variable instead of τc. This is done in order the better to sample (in numerical
quadratures) the stratification of the atmosphere. Equation (10.1) can then be recast
in the form

I (0) = ln 10
∫ ∞

0
e− ln 10

∫ τc
0 k(t) t d(log t)k(τc) S(τc) τc d(log τc). (10.2)

We keep τc as the integration variable in the following equations for the sake of
simplicity. However, plots of the integrands will be made on the assumption that
we are sampling the model atmosphere at equally spaced points in log τc. Hence,
the relevant functions will be plotted multiplied by τc ln 10.

It is interesting to interpret the attenuation exponential as the probability of a
photon, emitted at τc, for escaping freely (reaching zero optical depth) from the
atmosphere. A glance to the dotted line in Fig. 10.1 helps in understanding this
interpretation: the higher the photon is formed, the higher the escape probability.
Photons formed very deep in the atmosphere (e.g., at log τc = 1) cannot reach the
surface of the star, whereas those formed at, for example, log τc = −2 leave almost
unhindered. The specific model atmosphere used to calculate the attenuation ex-
ponential in Fig. 10.1 is irrelevant since the shape of such a function in any other
model is qualitatively the same.†

The product of the other two factors in the integrand of Eq. (10.1) directly gives
the emission coefficient (solid line in Fig. 10.1), which is typically a monotonically

† Figures 10.1 to 10.5 of this section were originally conceived by B. Ruiz Cobo.
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Fig. 10.2. Same as Fig. 10.1 for the wavelength samples at −11 nm and the very core of
the line (dashed-triple-dotted, dashed-dotted, and long-dashed lines are correspondingly
the same as dotted, solid, and short-dashed lines).

(exponentially) increasing function of log τc. Thus, the integrand of the formal
solution of the RTE is an asymmetric bell-shaped function like the dashed line in
Fig. 10.1 that results from multiplying the other two curves. When we run from
the continuum wavelengths through the core wavelengths as in Fig. 10.2, we find
that the bell-shaped function shifts towards higher layers of the atmosphere.

With this result in mind, we can interpret the integrand of the solution of the
RTE (10.1) as a contribution function,

C(τc) ≡ e− ∫ ∞
0 k(t) dt k(τc) S(τc), (10.3)

that informs us of how the different atmospheric layers contribute to the observed
spectrum. With this interpretation, since the various contribution functions peak
at different optical depths (see Fig. 10.3), one could say that the closer to the line
core, the higher the photons have mostly been formed. This is a qualitatively true
conclusion that holds for every absorption line whatever the model atmosphere. In
fact, we can understand this result intuitively: the profile shape of the line indicates
a variation of atmospheric opacity (or transparency) with λ. The medium is more
transparent (light is less heavily absorbed) in the continuum wavelength region than
in the line-core region. If the medium is more transparent at given wavelengths,
then one can “see” deeper into the atmosphere at these wavelengths; in other words,
the probability of photons for escaping from deeper layers is higher than at those
wavelengths where the opacity is greater.

An extrapolation of the above results would induce us to think that some spectral
lines are formed deeper and some other lines are formed higher in the atmosphere.
This is a justified belief that, again, is qualitatively true. Weaker lines, that is, those
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Fig. 10.3. Stokes I (top panel) sampled at several wavelengths (crosses) where the contri-
bution function is evaluated (bottom panel). The contribution functions from right to left
correspond to wavelength samples from left to right.

with a smaller depression, or those whose core is closer to the continuum intensity,
are formed deeper on average than the stronger lines – those with significant de-
pression cores. If one compares the core contribution functions of two lines, that
with the stronger core has a contribution function (CF) that peaks at higher layers
of the atmosphere. This type of comparison has driven numerous authors to believe
that they are probing the various layers by simply measuring the same parameter
over different spectral lines. Nevertheless, their reasoning fails when they attempt
to extract quantitative information: our conclusions are qualitative and any quan-
titative extrapolation may be wrong. A spectral line whose minimum is 0.8 Ic has
formed deeper on average than another line whose minimum is at 0.2 Ic, but by
how much? We cannot answer this question. First, because the comparison may
be strictly true for the two line cores, but certainly not for the wings of the second
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line when compared with the core of the first line. Second, because even within
every one of the lines a broad range of layers is involved in the spectrum formation.
Third, because CFs for single-wavelength samples are not Dirac delta distributions
but have a finite width. This last fact means that, indeed, the single wavelength
samples are formed in fairly broad regions of the medium: the probability is not
zero that two photons of a given wavelength may come from widely separated parts
of the medium. Hence, the information one might expect to extract from measure-
ments at this wavelength hardly corresponds to a given height in the atmosphere.
And finally because the contribution functions depend on the model atmosphere:
one cannot say that a given line is “universally” formed at that height; its CFs may
peak at different optical depths for two different model atmospheres, as we shall
see later.

10.1.2 The anisotropic case

To better understand line formation in the presence of a magnetic field, let us pro-
ceed by considering light propagation along the optical axis of the medium, i.e., in
the direction of a constant B. This has been called (Section 9.4.2) the longitudinal
case. According to the results of that section we have only to deal with Stokes
I + V and I − V , for which the corresponding CFs are:

CI±V (τc) = e− ∫ τc
0 (1+η0 φ∓1) dt [1 + η0(τc) φ∓1(τc)] S(τc). (10.4)

Repeating similar calculations to those carried out for the isotropic case, but now
with a longitudinal magnetic field whose strength varies linearly from 3600 G at
log τc = 1.2 to 1000 G at log τc = −4, we find the results summarized in Fig. 10.4.
At −10 pm from the line center, I + V is made up of photons that have mostly
formed deeper than those of I − V . Since integration is a linear operation and
V = 1/2(I + V ) − 1/2(I − V ), we find the CF for V to be

CV (τc) = 1

2
CI+V (τc) − 1

2
CI−V (τc), (10.5)

which is shown in the bottom panel of Fig. 10.4. Note the significant difference
between the contribution function for Stokes I and the contribution function for
Stokes V . The latter has two lobes, one of them being negative! What does this
mean? What kind of contributing photons provides a negative contribution? The
appearance of (two or more) negative lobes in the CFs of Stokes Q, U , and V
is natural since we know that all the three Stokes parameters have been defined
as differences between two intensity measurements (see Chapter 3). What happens
simply is that the interpretation of CQ , CU , and CV as a “contribution” somehow
loses its meaning: photons have been “added” at some place and are “subtracted”
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Fig. 10.4. Top panel: Attenuation exponential (dotted and dashed-triple-dotted lines),
emission coefficient (solid and dashed-dotted lines), and contribution function (short- and
long-dashed lines) of I + V and I − V , respectively, of the Fe I line at 630.25 nm, at
−10 pm from the line center. Calculations have been made in a solar plage model with a
longitudinal magnetic field that varies linearly with log τc from 3600 G at log τc = 1.2 to
1000 G at log τc = −4. Bottom panel: CFs of I + V (dotted line), I − V (dashed line),
and V (solid line).

elsewhere; both the addition and the subtraction are important in reaching the spe-
cific state of polarization. Moreover, when we scan the spectral line, the modifi-
cations of CV are not as clear as those for CI (see Fig. 10.5). Quite remarkably,
almost the whole photosphere seems to have an influence on the V profile. A mean
depth of formation can hardly be ascribed to the various wavelength samples. Note
that the sample at the central wavelength of the line has a zero contribution. This is
a consequence of V being zero at that wavelength. Nevertheless, the reader should
realize that every antisymmetric function (in this interval of log τc) could have been
a CF for that wavelength as well.

In the general case, one obviously has

C(τc) = O(0, τc)K(τc)S(τc), (10.6)
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Fig. 10.5. Stokes V (top panel) sampled at several wavelengths (crosses) where the contri-
bution function is evaluated (bottom panel). The contribution functions of the wavelength
samples from left to right are represented by (in this order) solid (large), short-dashed,
dashed-dotted, dashed-triple-dotted, long-dashed, solid (small), and straight, solid line
equal to zero.

and the contribution function is a vector function with one component for each of
the Stokes profiles. Equation (9.20) ensures that the integral of this contribution
function indeed gives the emergent Stokes spectrum. A graphical illustration of
such a general CF is shown in Fig. 10.6, where C is represented as a function of
the logarithmic optical depth (on the X axis) and of the wavelength (on the Y axis).
The calculations have been made for the Fe I line at 630.25 nm in the penumbral
model of Fig. 9.3. CI (λ; τc) is perhaps the most easily interpretable of the four
components. Note that, far from the line center, the contribution function peaks at
low atmospheric layers, whereas the central wavelengths show contributions from
much higher layers. The Zeeman splitting is also visible, and, most importantly, the
magnetic field strength gradient is easily discernible: the splitting is larger at lower
atmospheric layers than at higher atmospheric layers. The LOS velocity gradient is
more conspicuous in the other three components, where the wavelength asymmetry
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Fig. 10.6. Contribution function of the Fe I line at 630.25 nm in the penumbral model of
Fig. 9.3. Wavelength is along the Y axis and logarithmic optical depth along the X axis.

of the CFs is noteworthy. We know from Section 9.2.1 that, in the absence of a
velocity gradient, the solution of the RTE and, hence, the corresponding CFs have
definite wavelength symmetry properties.

10.2 Height of formation of spectral lines and the fundamental
ill-definition of the CFs

Many authors have tried to reach a sound definition of the height of formation for
a given spectral line. Observers have long dreamed of the possibility of ascribing
definite depths to the various lines (‘this line is formed at x km above the reference
and that other line is formed at y km . . .’). Were this ascription possible, gradi-
ents of physical quantities would be obtained by simply inferring the quantities by
making use of the differently formed lines. Several attempts have been made but
the most cursory glance at Figs 10.5 and 10.6 should discourage even the most
optimistic researcher: a given spectral line receives “contributions” from a fairly
broad range of layers, not from a single layer alone. This conclusion by itself
is recommendation enough to refrain from looking for a height of formation of
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Fig. 10.7. Contribution function of the Fe I line at 630.25 nm in the penumbral model of
Fig. 9.3 but with a constant magnetic field strength of 1000 G. Wavelength is along the Y
axis and logarithmic optical depth along the X axis.

spectral lines. However, there are yet further reasons in the same spirit, as we
shall see.

Very interestingly, CFs depend strongly on the model atmosphere. A given spec-
tral line is formed differently in the quiet Sun and in a sunspot. Every physi-
cal quantity has an influence on the emergent Stokes spectrum and this influence
varies from one atmosphere to another. As an example, consider the same Fe I

line at 630.25 nm in Fig. 10.6 but now formed in a similar atmosphere with the
sole difference of a constant magnetic field strength of 1000 G. The new contribu-
tion functions are plotted in Fig. 10.7. A comparison with Fig. 10.6 shows clear
differences, although the two atmospheres are fairly close to each other.

Certainly, if we are interested in using the CFs to measure the magnetic field
at given atmospheric heights, we have serious problems. In everyday language,
we might say that “the ruler varies with the object to be measured” and is hence
totally useless. The difficulties may be even greater when one is interested in find-
ing a mean depth (or height) of formation for the equivalent width, the Stokes V
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peak distance, or any other parameter involving several wavelengths across the line
profile at the same time.

Furthermore, from a mathematical viewpoint, CFs are ill-defined functions. In
fact, they are defined as integrands. Thus, any function with the same integral (i.e.,
whose integral is the Stokes spectrum) will be a CF in every respect. Specifically,
every vector function of the form C + f, with f(τc) being a function whose integral
is zero, will be a contribution function since∫ ∞

0
[C(τc) + f(τc)] dτc =

∫ ∞

0
C(τc)dτc = I(0). (10.7)

In summary, CFs provide some interesting qualitative ideas on where and how
each of the four Stokes parameters has been formed but they cannot be used to
ascribe measurements to given atmospheric heights.

10.2.1 Alternative CF definitions

This basic failure of CFs to provide quantitative measurements of the height of
formation of spectral lines was soon realized. It prompted theoreticians to propose
alternative definitions.† Particularly noteworthy is the work of Magain (1986),
who proposed to use a “line-depression contribution function” by formulating and
solving (formally) a transfer equation for the line depression parameters u0 −
I(0)/Ic(0), where u0 ≡ (1, 0, 0, 0)T. It is very easy to see, however, that these
new contribution functions, CD, are such that

u0 − I(0)
Ic(0)

≡
∫ ∞

0
CD(τc) dτc (10.8)

and suffer from the same ill-definition as the formerly mentioned contribution
functions, and that they are unable to provide any quantitative measure of the height
of formation of spectral lines (see Ruiz Cobo and del Toro Iniesta, 1994). As a
matter of fact, we shall see in the remainder of this chapter that the concept “height
of formation of a spectral line” should not be trusted quantitatively: different phys-
ical quantities may be measured at different atmospheric heights with a given
spectral line.

10.3 The sensitivities of Stokes profiles

In view of the ambiguities found in the search for a mean depth of formation of
spectral lines, we had better change our minds and search in another direction.
One is indeed interested in obtaining the diagnostic capabilities of the different

† The interested reader is directed to the paper by Ruiz Cobo and del Toro Iniesta (1994) for an extensive
bibliography.
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spectral lines. In other words, we can think of the spectral lines as the needle of
an ammeter in the laboratory: when the intensity of the circuit changes, the needle
moves; when the physical quantities of the medium change, the Stokes spectrum
hopefully responds with detectable variations. A given spectral line will be a good
diagnostic of a given physical quantity if it forms differently in two atmospheres
having different values of that physical quantity, i.e., if the two values produce
observable differences in the Stokes spectrum of the line. Thus, we are not inter-
ested for the moment in where the line forms but in whether it varies appreciably
when some physical quantity changes. Note that this condition is necessary but
not sufficient. A given line may be decidedly different when emerging from two
atmospheres because of changes in several physical quantities and not in one alone:
there may be cross-talk among the physical quantities of the medium. Therefore,
the diagnostic problem turns out to be formidable and requires careful treatment.
As anticipated in the introduction to this chapter, the only available tool is the ra-
diative transfer equation for polarized light, which has the necessary links between
light and the medium from which it is coming. Unfortunately, although the RTE is
a linear differential equation, it involves non-linear functions (K, S, and τc) of the
model atmosphere: the calibration process becomes even more complicated.

10.3.1 Linearization of the RTE and response functions

Since non-linear problems are difficult to deal with, a first-order approximation
often used in almost every field of theoretical and experimental physics is lin-
earization. By linearization we understand a perturbative analysis in which small
perturbations of the physical parameters of the model atmosphere will propagate
“linearly” to small changes in the observed Stokes spectrum. To make the analysis
quantitative, let us start by considering a model atmosphere like that of Eq. (9.1):

x(τc) = [x1(τc), x2(τc), . . . , xm−1(τc), xm(τc)], (10.9)

where xi (τc) represent all the physical quantities characterizing the model (T , pe,
B, θ , etc.), that is, characterizing the propagation matrix, K, and the source func-
tion vector, S. Let us assume as well the validity of the hypotheses summarized in
Section 8.5.

Consider small perturbations, δxi (τc), that induce small changes in K and S that,
to a first order of approximation, can be written in the form

δK(τc) =
m∑

i=1

∂K
∂xi

δxi (τc) (10.10)
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and

δS(τc) =
m∑

i=1

∂S
∂xi

δxi (τc). (10.11)

If these small changes in the propagation matrix and the source function vector
lead to small changes, δI, in the Stokes vector, then one can introduce all these
modifications into the RTE to get

d(I + δI)
dτc

= (K + δK)(I + δI − S − δS). (10.12)

Since the perturbations are assumed to be small, only the first-order terms of
Eq. (10.12) may be kept and, after taking the RTE into account, one obtains

d(δI)
dτc

= K(δI − δS) + δK(I − S). (10.13)

Now, if we define an effective source function vector

S̃ ≡ δS − K−1δK(I − S), (10.14)

then we obtain a differential equation for the Stokes profile perturbations,

d(δI)
dτc

= K(δI − S̃), (10.15)

that is formally identical to the RTE itself. Therefore, the solution to Eq. (10.15)
must be formally the same as that for the RTE [Eq. (9.20)]:

δI(0) =
∫ ∞

0
O(0, τc)K(τc)S̃(τc) dτc. (10.16)

The only difference is the effective source function vector.
Note that we have taken the existence of the inverse, K−1, of the propagation

matrix for granted. This is justified because reversibility of physical processes
demands that K be non-singular. Absorption and dispersion, the two basic phe-
nomena that constitute the propagation matrix, are non-depolarizing as we have
already discussed in Section 7.4. Depolarizing phenomena appear only from emis-
sion. According to Landi Degl’Innocenti and Landi Deg’Innnocenti (1981), non-
depolarizing processes do not show the typical irreversible character of depolarizing
ones. Hence, K represents reversible phenomena and must be invertible.

Pursuing the analogy between the RTE and Eq. (10.15), a contribution function
to the perturbations of the observed Stokes profiles can be defined as the integrand
of Eq. (10.16):

C̃(τc) ≡ O(0, τc)K(τc)S̃(τc). (10.17)
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Now, Eqs (10.14), (10.10), and (10.11) imply that C̃ must decompose into a sum
of terms such as

C̃(τc) =
m∑

i=1

C̃i (τc) ≡
m∑

i=1

Ri (τc) δxi (τc), (10.18)

where, by definition, the response function vector, Ri (τc), of the Stokes profiles to
perturbations of the parameter xi is:

Ri (τc) ≡ O(0, τc)

[
K(τc)

∂S
∂xi

− ∂K
∂xi

(I − S)
]
. (10.19)

In terms of the response functions (RFs), the solution (10.16) can be recast in
the form

δI(0) =
m∑

i=1

∫ ∞

0
Ri (τc) δxi (τc) dτc. (10.20)

Therefore, the final modification of the observed Stokes profiles is given by a sum
of terms, each related to one physical quantity among those characteristic of the
medium. Each term is an integral over the whole atmosphere of the perturbation
of the physical parameter multiplied by the response function to that parameter. If
xk is modified by a unit perturbation in a restricted neighborhood of τ0, then the
values of Rk around τ0 give us the ensuing variation of the Stokes spectrum. Since
the observed Stokes parameters are usually measured relative to reference values
(e.g., the continuum intensity of the – unpolarized – quiet Sun) the units of RFs
are the direct inverse of their corresponding quantities. Hence, response functions
to temperature perturbations will be expressed in K−1, to magnetic field strength
perturbations in G−1, etc. Equation (10.20) suggests for RFs the role of partial
derivatives of the Stokes spectrum with respect to the physical quantities of the
model atmosphere. Such a role is even clearer when that equation is substituted
(for numerical purposes) by a quadrature of coefficients c j ,

δI(0) = �(log τc) ln 10
m∑

i=1

n∑
j=1

c jτ j Ri (τ j ) δxi (τ j ), (10.21)

where we assume that our atmosphere is sampled at n equally spaced points in
the logarithm of the continuum optical depth. Then, if we include the coefficients
�(log τc) ln 10 c jτ j into the RFs (as one usually does in numerical and graphical
representations), these appear as the coefficients of a linear expansion of δI(0) in
terms of δxi . Thus, within the linear approximation, response functions directly
give the sensitivities of the Stokes spectrum to perturbations of the physical con-
ditions of the medium. Graphical examples of RFs can be seen in Figs 10.8, 10.9,
10.10, and 10.11. They correspond to the sensitivities of the Fe I line at 630.25 nm
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Fig. 10.8. Response functions of Stokes I of the Fe I line at 630.25 nm to perturbations
of the temperature (top row), of the magnetic field strength (middle row), and of the line-
of-sight velocity (bottom row) in two model atmospheres. The model of the left panels is
500 K hotter, has a magnetic field 500 G stronger, 20◦ more inclined, and with an azimuth
50◦ larger than the model of the right panels. The latter has a linear gradient of the LOS
velocity whereas the former is at rest. Wavelength is along the Y axis (in pm with respect
to the center of the line) and logarithmic optical depth along the X axis.
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Fig. 10.9. Same as Fig. 10.8 but for Stokes Q.

in the HSRA model (Gingerich et al., 1971) to which a constant B = 2000 G,
θ = 30◦, and ϕ = 60◦ has been added (left columns of the four figures) and in a
model 500 K cooler, 500 G weaker, 20◦ less inclined, with an azimuth of 10◦, and
a linear stratification of the LOS velocity given by 1.58 + 0.3 log τc (km s−1). The
Stokes profiles of this line in both model atmospheres are shown in Fig. 10.12.

A careful look at the RFs expression (10.19) easily reveals that the same evo-
lution operator applies to the Stokes spectrum and to its linear perturbations. The
terms in brackets represent those perturbations generated at τc that “evolve” up to
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Fig. 10.10. Same as Fig. 10.8 but for Stokes U .

τc = 0 by means of O(0, τc). Notably, the perturbations follow both the variations
of the propagation matrix and the variations of the source function vector. Obvi-
ously, line formation is influenced by the “sources” and the “sinks” of photons.†

† We already know that the propagation matrix not only accounts for the sinks of photons (absorption) but for
dispersion effects as well.
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Fig. 10.11. Same as Fig. 10.8 but for Stokes V .

Moreover, the signs are changed for these two variations so that they compete
against each other and may eventually cancel out. This is a very important fact
that is sometimes forgotten in classical analyses which only account for K effects
(absorption effects for unpolarized radiation). We return to this property later in
this chapter.
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Fig. 10.12. Stokes profiles of the Fe I line at 630.25 nm as synthesized in the two model
atmospheres of Figs 10.8, 10.9, 10.10, and 10.11. Solid lines correspond to the left-column
model and dashed lines correspond to the right-column model.

Before continuing, the numerical evaluation of RFs deserves particular atten-
tion. RFs could certainly be calculated by a four-step process as follows: (1)
synthesis of the Stokes spectrum in a given model atmosphere; (2) perturbation
of one of the atmospheric parameters in a small neighborhood of optical depth and
synthesis of a “perturbed” spectrum in the resulting model; (3) calculation of the
ratio between the difference of both spectra and the perturbation of that parameter;
(4) repetition of (2) and (3) for each optical depth, for each wavelength sample,
and for the remaining atmospheric parameters. This is, of course, a long and te-
dious procedure that could be named “the brute force method”. If, however, we
realize that we have calculated (approximated) the evolution operator, the propa-
gation matrix, the source function vector, and the Stokes profiles at each optical
depth while synthesizing the observed spectrum, then it can easily be understood
that we have all the ingredients to calculate the RFs. We only need the K and S
derivatives. On the one hand, within the LTE approximation, the source function
depends only on the local temperature. This dependence is well known analyti-
cally as the Planck function. On the other hand, we can calculate the derivative of
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the analytic approximations used in the computer routines to evaluate the elements
of the propagation matrix. Finally, the derivatives of the Voigt and Faraday–Voigt
functions [Eqs (6.57) and (6.58)] can easily be calculated after rewriting them as

H(u, a) = a

π

∫ ∞

−∞
e−(u−z)2 1

z2 + a2
dz (10.22)

and

F(u, a) = 1

π

∫ ∞

−∞
e−(u−z)2 z

z2 + a2
dz. (10.23)

The result of such a calculation is:

∂H(u, a)

∂u
= 2aF(u, a) − 2u H(u, a), (10.24)

∂F(u, a)

∂u
= 2√

π
− 2aH(u, a) − 2uF(u, a), (10.25)

∂H(u, a)

∂a
= −∂F(u, a)

∂u
, (10.26)

∂F(u, a)

∂a
= ∂H(u, a)

∂u
. (10.27)

The first two derivatives are directly calculated from Eqs (10.22) and (10.23) and
after identifying the resulting terms. The fourth is obtained after Eq. (10.23) and
integrating by parts. The third derivative is obtained after equating the second cross
derivatives of F calculated from Eqs (10.25) and (10.27). Note that our expressions
for these partial derivatives differ slightly from those by Ruiz Cobo and del Toro
Iniesta (1994). The reason is that their definition of the Faraday–Voigt function is
half our F(u, a).

Equation (10.20) provides another interesting insight into the diagnostic prob-
lem: the modifications of the observed Stokes spectrum may be given by perturba-
tions of different quantities or by perturbations of a single quantity but at various
τc locations. That is, the same variation of I(0) may be produced by a change in
temperature or by a change in the magnetic field strength, or even by a change in
the magnetic field strength in the neighborhood of log τc = 0 or by a change in B
in the region of log τc = −3. Hence, δI(0) cannot be ascribed to the perturbation
of a given quantity at a given optical depth without considering all the remain-
ing physical quantities characterizing the medium. Figures 10.8, 10.9, 10.10, and
10.11 illustrate very well the wealth of sensitivities that a single spectral line may
have. The response to the various perturbations is very involved and the cross-talk
among parameters is apparent. The techniques of analysis that try to disentangle
information from the observed Stokes spectrum are really challenged by a fasci-
nating and difficult diagnostic problem. Last, but not least, Eq. (10.20) readily
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explains that, unlike CFs, response functions are not mathematically ambiguous:
the integrand of this equation is a product of two independent functions. In other
words, whatever the procedure for evaluating RFs used, one should find the same
result. As a matter of fact, this is the reason for using the “brute force method” for
checking newly developed computer routines that calculate RFs directly through
Eq. (10.19).

10.3.2 Properties of response functions

10.3.2.1 Relative sizes of relative RFs

A nice way of studying the relative importance of the various atmospheric param-
eters in line formation is to consider relative perturbations,

δxi (τc)/xi (τc).

Equation (10.20) may keep the same form if we rather use relative response func-
tions, R̃i (τc) ≡ Ri (τc) xi (τc). Hence, R̃i tells us about the reaction of the observed
Stokes spectrum to relative (i.e., dimensionless) perturbations. Therefore, if one
compares the various relative RFs, one easily discovers the relative importance of
the atmospheric parameters in line formation. If, for instance, R̃k,4([τ0, τ1]) >

R̃l,4([τ0, τ1]) at a given wavelength, we know that Stokes V at this wavelength de-
pends more on the values of xk than on the values of xl over the region [τ0, τ1] of
optical depth. In general, experience shows that R̃T is the largest RF at almost all
depths and wavelengths: this is a natural consequence of T being the most impor-
tant atmospheric parameter for line formation.

10.3.2.2 Sensitivities at various optical depths

As we probe the deeper atmospheric layers, the Stokes spectrum approaches the
source function, since we have implicitly assumed that beneath the photosphere
thermodynamic equilibrium prevails:

lim
τc−→∞(I − S) = 0. (10.28)

Therefore, the second term in brackets of Eq. (10.19) vanishes at low optical
layers. At these depths, the only relevant term is the source function derivative.
Since we already know that under LTE, S depends only on T , we must conclude
that RFs to temperature perturbations are significantly above zero down to much
lower depths than any other RF, or that RFs to temperature have the slowest trend
to zero at depth. In other words, the Stokes profiles may be sensitive to the temper-
ature of lower layers even though they are completely insensitive to the values of
the magnetic field vector or the LOS velocity at these lower layers.
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Differences are expected not only in optical depth but also in wavelength when
comparing the sensitivities to temperature, pressure, chemical composition, and
atomic parameters with those to the magnetic field vector and the LOS velocity.
This can be understood as follows. On the one hand, the propagation matrix can be
recast as in Eq. (7.43),

K = 11 + η0�,

where the elements of matrix � can be identified from Eqs (8.14) and (8.15). On
the other hand, η0 does not depend on either B or vLOS. Thus, K derivatives with
respect to B, θ , ϕ, and vLOS will be of the form

∂K
∂xi

= η0
∂�

∂xi
,

whilst K derivatives with respect to the other parameters will be of the form

∂K
∂xi

= ∂η0

∂xi
� + η0

∂�

∂xi
.

10.3.2.3 Resemblance of CFs and RFs to T

A glance at Figs 10.6 and 10.7 on the one hand, and Fig. 10.8 on the other, reveals
similar forms of the contribution function and the response function to temperature
perturbations. The resemblance does not occur by chance but has a clear physical
reason: temperature is the “dominant” quantity of line formation so that variations
in temperature are “felt” by photons wherever they form. We can understand this
with a simple order-of-magnitude estimate of the ratio C̃1/C1 for Stokes I when
we include only the temperature sensitivity in C̃1.

Since K depends on temperature mostly through η0, that ratio is of the order

C̃1

C1
)

[
d ln Bν

dT
− ∂ ln η0

∂T

I − Bν

Bν

]
δT, (10.29)

where we have already equated the first element of the source function vector with
the Planck function. If we now assume the Wien approximation to the Planck
function,

d ln Bν

dT
) hν

kT 2
, (10.30)

and, according to Gray (1992),

∂ ln η0

∂T
) hν

kT 2
(10.31)

as well for our neutral iron line. Expression (10.29) can then be rewritten as

RT,1

C1
) hν

k

δT

T 2

(
1 − I − Bν

Bν

)
. (10.32)
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Therefore, wherever the ratio (I − Bν)/Bν is small, the ratio between the re-
sponse function of Stokes I to temperature and the Stokes I contribution function
should be inversely proportional to the square of temperature. This certainly hap-
pens in the wings of the lines where, according to the discussions in Section 10.2,
we are seeing deeper, so that closer to the limit I − Bν −→ 0 (Section 10.3.2.2).
As a corollary of this resemblance of CFs and RFs to temperature, one might say
that any attempt to ascribe mean depths of formation to given spectral lines has
a high probability of being wrong since CFs will mostly indicate the sensitivity
to temperature. This last conclusion is yet more reason to abandon the search for
mean depths of formation of spectral lines.

10.3.2.4 Wavelength symmetries

Applying similar reasonings to those in Section 9.2.1 to analyze the wavelength
symmetries of the Stokes profiles leads to the conclusion that RFs keep the same
symmetry properties: response functions of Stokes I , Q, and U are even functions
of wavelength about the central wavelength of the line and response functions of
Stokes V are odd functions of wavelength in the absence of LOS velocity gradi-
ents. Therefore, when material velocities are constant along the optical path, the
same information is carried by both wings of the line. Wavelength samples that
are symmetric with respect to the central wavelength of the line have the same sen-
sitivities to perturbations of any atmospheric parameter. Information is redundant
and the redundancy is removed only in the presence of velocity gradients.

10.3.2.5 Response functions to constant perturbations

There are physical parameters that can be assumed constant throughout the optical
path. The perturbations to these parameters must be constant as well. In some
instances, although the atmospheric parameter is not constant with depth, consid-
eration of perturbations that are constant might be interesting. The RF to such
constant perturbations of one of these parameters, for example xk , is simply the
integral over the whole atmosphere of Rk(τc). Imagine that xk is the only relevant
quantity so that

δI(0) =
∫ ∞

0
Rk(τc) δxk(τc) dτc. (10.33)

Since δxk(τc) = δxk = constant,

δI(0) = δxk

∫ ∞

0
Rk(τc) dτc ≡ δxkR′

k . (10.34)

The new parameter, R′
k , can be said to be the RF of the Stokes spectrum to constant

perturbations of the parameter xk .
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An interesting example of a constant parameter is the product Agf of the element
abundance, the multiplicity of the lower level of the transition (also called the sta-
tistical weight of the line), and the oscillator strength of the line (see Section 6.3).
Since S does not depend on Agf , we need only worry about the derivative of K
with respect to this quantity.

Equations (6.62) and (6.63) tell us about the direct proportionality between the
absorption and dispersion profiles and the product N f of the number of absorbers
or dispersers per unit volume and the oscillator strength of the line. We know that
N is to be calculated through the Boltzmann and Saha equations, which give the
populations within the LTE approximation. These equations establish a propor-
tionality between N and Ag, so that both χα and χ̃α, and hence η0 [see Eq. (7.40)],
are proportional to the product Agf . Now, since the propagation matrix can be
written as in Eq. (7.43), the partial derivative of K with respect to Agf is

∂K

∂Agf
= ∂η0

∂Agf
� = η0

Agf
� = K − 11

Agf
, (10.35)

whence

RAgf = −O
K − 11

Agf
(I − S). (10.36)

Thus,

δI(0) = δ(Agf )
∫ ∞

0
RAgf (τc) dτc ≡ δ(Agf )R′

Agf . (10.37)

The last two equations open up the possibility of using the Sun as an atomic
physics laboratory where atomic parameters such as the multiplicity of the lower
level of the transition or the oscillator strength, and solar parameters such as ele-
mental abundances, can be evaluated.

Another interesting example of an atmospheric parameter assumed to be con-
stant with depth is the macroturbulence velocity, although it enters the Stokes spec-
trum synthesis in a different way from the other parameters. The sensitivity of the
observed spectrum to perturbations of this parameter is also calculated in a slightly
different way. According to Eq. (9.24), a change in the macroturbulence velocity
modifies only the macroturbulence Gaussian function:

δGmac = ∂Gmac

∂ξmac
δξmac, (10.38)

whence

δIobs = I ∗ δGmac = I ∗ ∂Gmac

∂ξmac
δξmac. (10.39)
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The response function of the Stokes parameters to perturbations of the macrotur-
bulence velocity can then be simply defined as

R′
ξmac

≡ I ∗ ∂Gmac

∂ξmac
. (10.40)

10.3.2.6 Response to harmonic perturbations

Consider a harmonic perturbation of the parameter xk :

δxk(τc) = a e2π isτc, (10.41)

where s stands for the spatial frequency and the amplitude is small enough so as to
be represented to a first-order approximation. If no other atmospheric parameter is
perturbed, the Stokes spectrum is modified by

δI(0; s) = a
∫ ∞

0
Rk(τc) e2π isτcdτc. (10.42)

If we define Rk(τc) = 0, ∀ τc < 0, Eq. (10.42) can readily be rewritten as

δI(0; s) = a F[Rk], (10.43)

where, again, F represents the Fourier transform operator. Thus, if the perturbation
is harmonic, the change of the Stokes spectrum is given by the Fourier transform
of the corresponding response function.

10.3.2.7 Model dependence of RFs

We have so far not discussed one of the most evident properties of RFs that is in-
deed conspicuous in the graphical illustration of Figs 10.8, 10.9, 10.10, and 10.11.
This omission does not mean that the remaining property is less important. On the
contrary, the model-dependence of RFs is germane to our understanding of Stokes
spectrum diagnostics. We cannot ascribe a mean height of formation with CFs.
Likewise, we cannot quantitatively say with RFs that a given line is sensitive to
one parameter and is insensitive to another. This cannot be done because RFs do
depend on the model atmosphere. Some qualitative estimates can be made, but
quantitative determinations can be carried out only once we know the medium and,
remember, the astrophysical unknown is in fact the medium. RFs teach us many
things and, most importantly, they can be used in quantitative analysis techniques
(see Chapter 11), but cannot be simply used to find “heights of sensitivities” except
for a posteriori cases where the model atmosphere is known.

10.4 A theoretical description of measurement

In the introduction to this chapter, we have already noted that many measurements
are sometimes not just a resolved portion of the Stokes spectrum, but some given
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combination of parameters and/or wavelength samples. An overview of the diag-
nostic capabilities of the Stokes spectrum must certainly deal with the analysis of
such general measurements. The best way to proceed in this endeavor is first to
define properly what such a general measurement is. Once we have fixed the as-
sumptions (which are implicit in most cases) we will understand the advantages
and drawbacks of the different measured parameters. We shall show that the most
general measurement over the Stokes spectrum, I(0; λ), can be described in terms
of the action of two operators over I(0; λ).

Assume the observed Stokes spectrum, I(0; λ), to be a vector field that is indefi-
nitely differentiable with continuity over the set of real numbers. This assumption
is fairly common and indeed implicit in most measurements. The continuity of
I(0; λ) and/or its derivatives is important for the sampling process to make sense.
Most modern measurements start, in fact, by sampling and truncating the spectrum
(only a limited wavelength range is observed).

Let � be a linear and continuous functional whose image of the Stokes spectrum
is a 4q-element vector y = (y1, y2, . . . , y4q):

y ≡ �[I(0; λ)]. (10.44)

This operator is in charge of the sampling and truncation operations. These two op-
erations are usually described by the multiplication of I (0; λ), Q(0; λ), U (0; λ),
and V (0; λ) by a Dirac comb distribution and a rectangular function of width equal
to the wavelength span of the measurements. Actually, real sampling also involves
a convolution of the spectrum with a narrow rectangular function because the de-
tector pixels have finite dimensions (we do not have infinite resolution). Since
convolution is a linear and continuous operation, � is still able to describe actual
sampling. The image y may be, for example,

y = [I (λ1), I (λ2), . . . , I (λq−1), Ic,

Q(λ1), Q(λ2), . . . , Q(λq−1), Qc,

U (λ1),U (λ2), . . . ,U (λq−1),Uc,

V (λ1), V (λ2), . . . , V (λq−1), Vc]T,

(10.45)

where we have suppressed the τc = 0 indicator for notational simplicity, and
where we understand that the y elements are indeed actual samples of the Stokes
spectrum.

After sampling and truncating, some operations are carried out with the samples
in order finally to get a given parameter, ζ . Let � be a differentiable operator that
performs such operations:

ζ ≡ �[y] = �{�[I(0; λ)]}. (10.46)
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As we discussed in Section 10.3, ζ will be useful if it varies when the atmospheric
quantities are perturbed. The differentiability of � is then of paramount importance
if we are interested in deducing the diagnostic capabilities of the measured param-
eter ζ . It is not a very restrictive condition because, in fact, it is verified by the
vast majority of measurements usually made over the spectrum. Mathematically
speaking, differentiability ensures the existence of the gradient

∇y(�) =
(
∂�

∂y1
,
∂�

∂y2
, . . . ,

∂�

∂y4q

)
, (10.47)

which links, to a first-order approximation, the modifications of the Stokes spec-
trum with changes in ζ :

δζ = ∇y(�) · δy, (10.48)

where the symbol · indicates the scalar product.

10.4.1 Generalized response functions

Now we only need to establish a connection between the perturbations, δxi , and
the modification, δζ , of our scalar parameter. This task is easy since the continuity
and linearity of � allow us to write

δy = �[δI(0; λ)] =
m∑

i=1

∫ ∞

0
�[Ri (λ; τc)] δxi (τc) dτc, (10.49)

an equation which can be introduced into Eq. (10.48) to give

δζ =
m∑

i=1

∫ ∞

0
∇y(�) · �[Ri (λ; τc)] δxi (τc) dτc. (10.50)

Therefore, analogously to Eq. (10.20), we can clearly identify a generalized
response function of ζ to perturbations of the physical parameter xk :

Rζ

k (τc) = ∇y(�) · �[Rk(λ; τc)]. (10.51)

We are thus able to know (to first order) the sensitivities of ζ to the atmospheric
parameters.

Had ζ been obtained through two linear operators (with � also linear), the ex-
pression of the RF simplifies to

Rζ

k (τc) = �{�[Rk(λ; τc)]} (10.52)

since we are already within the linear approximation. An example of such a case
is the integral of any Stokes profile over wavelength.
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10.4.2 An example

To better understand the usefulness of the theoretical description we have made of
measurements so far, let us consider a specific example.† Suppose that ζ = W ,
the equivalent width of the line. In this case, y = [I (λ1), I (λ2), . . . , I (λq−1), Ic]
and W = �[y] = �

∑q−1
i=1 [1 − I (λi )/Ic], where � is the wavelength sampling

interval. Hence,

∇y(�) = −�

I 2
c

[
Ic, Ic, . . . , Ic,−

q−1∑
i=1

I (λi )

]
.

With these expressions, it is easy to find that the response functions of the equiv-
alent width to perturbations of the atmospheric quantities are given by

RW
k (τc) = �

I 2
c

q−1∑
i=1

[
Rc

k(τc)I (0; λi ) − Rk,1(τc; λi )Ic
]
, (10.53)

where Rc
k is the RF of the continuum intensity and, obviously, Rk,1 is the RF of

Stokes I to perturbations of the parameter xk .
Remarkably, the response functions of the equivalent width result from adding

up q − 1 differences corresponding to the q − 1 samples of our observed I profile
except for that of the continuum. In each term, the sensitivity of the continuum and
that of the sample compete and may eventually cancel each other out. Since within
the LTE approximation, the continuum intensity depends only on temperature, this
competition is relevant only to the sensitivity to temperature, but equivalent widths
have indeed been used traditionally as a diagnostic of the temperature.

Figure 10.13 shows three examples of generalized relative RFs of the equivalent
width. The calculations have been done for the Fe I line at 630.25 nm in the model
atmosphere of the right-column panels of Figs 10.8, 10.9, 10.10, and 10.11. The
RF to temperature perturbations is plotted with a solid line, that to field strength
perturbations with a dashed line, and that to LOS velocity perturbations with a
dashed-dotted line. The two latter RFs are multiplied by a factor 30 in order to be
comparable in size to the first RF: whereas we can read the Y axis of the plot as
the modification δW produced by a 1% perturbation of T , it is the modification
induced by a 30% perturbation of either B or vLOS. This figure is an excellent
illustration of several of the features that we anticipated theoretically in this and
the previous sections.

• The relative sizes of the relative RFs readily tell us that W depends mostly on
T . Temperature is not only the dominant quantity of line formation but the main
parameter for the equivalent width of the lines.

† The interested reader may find this and other examples of generalized RFs in the paper by Ruiz Cobo and del
Toro Iniesta (1994).
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Fig. 10.13. Generalized response functions of the equivalent width of the Fe I line at
630.25 nm to relative perturbations (in percent) of the temperature (solid line), the mag-
netic field strength (dashed line), and the LOS velocity (dashed-dotted line). The two latter
are multiplied by 30. The calculations have been carried out with the model atmosphere
corresponding to the right-column panels of Figs 10.8, 10.9, 10.10, and 10.11.

• The double lobe of R̃W
T is a clear proof of both the greater sensitivity of the line

to T at the very low layers of the atmosphere and of the competition between
K and S in the final modification of W . Below log τc = 0, the only signifi-
cant sensitivity of W is that to T . We already know (Section 10.3.2.2) that, at
these low layers, only the S derivative with respect to temperature contributes
to the response function; no variation in K can be felt by the spectrum. The
positive lobe corresponds to the effects of an increase in the photon supply: if T
is increased, the number of available photons to be absorbed in the layers above
augments because the source function certainly increases. In contrast, the neg-
ative lobe shows a dominant role in the high layers of the K derivative, which
implies a line weakening (a decrease in W ) after an increase in temperature.
This weakening of Fe I lines in the solar atmosphere† due to an increase of T
was known from classical analyses which only took the absorption properties
(for unpolarized light) into account. However, these analyses are unable to ex-
plain, for instance, the center-to-limb variation of spectral lines as was explained
for the first time by Ruiz Cobo and del Toro Iniesta (1994).

• The line is insensitive to the values of both B and vLOS at layers below log τc = 1.

• R̃W
B shows just a single positive lobe in the model atmosphere of our example.

This means that W can be enhanced through an increase in B: the magnetic field
can desaturate the line. The sensitivity of this very line to B perturbations may
be different in other model atmospheres.

† Metals are mostly ionized in the solar photosphere. The most abundant ionization state of iron is Fe II.
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• The double lobe shape R̃W
vLOS

is also dependent on the model atmosphere. In this
particular case, we see that W reacts oppositely when one increases vLOS either
above or below log τc = −1.

• The integrals of R̃W
T (τc), R̃W

B (τc), and R̃W
vLOS

(τc) give the response to constant
relative perturbations of the corresponding parameters. For this model atmo-
sphere, a 1% perturbation of T produces a modification of −0.247 pm, a 30%
perturbation of B produces a modification of 0.18 pm, and a 30% perturbation
of vLOS produces a modification of 0.06 pm of the equivalent width.

10.4.3 Understanding measurements theoretically

Many measurements like those described in Section 10.4 are believed to represent
some kind of average of a given atmospheric parameter over the whole atmosphere.
For example, the Stokes V peak distance is assumed to be proportional to the mag-
netic field strength within some interval of values; the magnetograph signal, that is,
the integral of Stokes V over a narrow wavelength interval, is assumed to be pro-
portional to the longitudinal component, B cos θ , of the magnetic field within some
other interval of B values; the position of the minimum of Stokes I is often used as
a measure of the LOS velocity; etc. All these parameters are single-valued whereas
the corresponding physical quantities may vary throughout the optical path. We
are then led to assume that the stratification of B(τc), vLOS(τc), etc., is somehow
weighted and averaged to finally produce the measured parameter that hopefully
corresponds to the actual value of the physical parameter at some given height.
Certainly, the result of the average depends on the atmospheric parameter (B may
have a completely different stratification than vLOS) and on the measurement it-
self (the technique of measuring Stokes V peak distances is different from that of
integrating the profile).

Let us quantify all this reasoning and try to find a theoretical calibration (we
are interested in obtaining the average that is usually assumed but unknown). This
knowledge of the average will help in understanding the results of the measure-
ments but, in any case, we do not pretend to find a priori recipes: the dependence
of any measurement on the actual stratification of the atmosphere implies that only
a posteriori results are expected.

Assume, for instance, that the measured parameter ζ , defined in Eq. (10.46),
gives an estimate of the atmospheric parameter xk(τc). We understand in this way
that the necessary calibration factor for measuring ζ in the same units as xk is al-
ready included in the specific definition of �. Assume further that the measurement
is unbiased for constant stratifications of xk , that is,

ζ = xk,c (10.54)
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whenever

xk(τc) = xk,c = constant. (10.55)

If we accept that ζ is representative of some average of the actual stratification,
we are implicitly somehow looking for an “equivalent model atmosphere” where
xk(τc) = x0 is constant. Let ζ0 be the result of applying the two operators � and �

to the profiles emerging from that “equivalent atmosphere”. Then, the difference
δζ = ζ − ζ0 is given by

ζ − ζ0 =
∫ ∞

0
Rζ

k (τc) δxk(τc) dτc, (10.56)

according to Eqs (10.50) and (10.51), where δxk is the difference between the ac-
tual stratification and x0:

δxk(τc) = xk(τc) − x0. (10.57)

The condition expressed in Eqs (10.54) and (10.55) necessarily implies that

ζ0 = x0 (10.58)

and ∫ ∞

0
Rζ

k (τc) dτc = 1, (10.59)

that is, the generalized response function of ζ to perturbations of xk must be
normalized in area. Equation (10.58) is directly the hypothesis (10.54). Equa-
tion (10.59) comes from the fact that when xk(τc) = xk,c = constant,

ζ − ζ0 = (xk,c − x0)

∫ ∞

0
Rζ

k (τc) dτc, (10.60)

and the unbiasing condition requires

δζ = xk,c − x0,

whence Eq. (10.59).
The normalization of the generalized response function allows us to rewrite

Eq. (10.56) in the form

ζ =
∫ ∞

0
Rζ

k (τc) xk(τc) dτc, (10.61)

which gives us the measured parameter as an average of the actual stratification
weighted by the corresponding generalized response function. Therefore, we have
found what we were looking for. Note, however, that we have been implicitly
assuming that the only atmospheric quantity having an influence on ζ is xk(τc).
This is hardly the case in practice and some cross-talk among the atmospheric
parameters may appear.
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10.4.3.1 Heights of formation for measurements

As we had foreseen, the result of the measurement depends on both the actual
atmosphere (through Rζ

k and xk) and on the technique (through Rζ

k ). Note that only
when we know xk(τc) can we explore further the meaning of our measurement.
However, if we have a good enough approximation to the actual atmosphere, we
may even get an idea of a height of formation for that measurement. Rζ

k does
not depend strongly on the specific atmosphere: the response function is fairly
similar in two atmospheres that are not too different from each other. Thus, we can
assume a given stratification for xk(τc) and find that optical depth τ f at which the
measurement and the stratification coincide:

ζ ≡ xk(τ f ). (10.62)

Equation (10.62) is the definition of the height of formation for ζ . If xk(τc) is
constant, τ f has no meaning, of course. Assume that xk is a continuous mono-
tonic function of the optical depth. It then has an inverse function, x−1

k , whose
application to ζ gives τ f :

τ f = x−1
k (ζ ). (10.63)

Therefore, Eq. (10.61) implies that

τ f = x−1
k

{∫ ∞

0
Rζ

k (τc) xk(τc) dτc

}
. (10.64)

If, for instance, we assume that xk depends linearly on τc, then the height of for-
mation of measured parameter ζ turns out to be the barycenter of the generalized
response function.

An illustration of the use in practice of these heights of formation for measure-
ments is shown in Fig. 10.14, taken from a paper by Westendorp Plaza et al. (1998).
It shows the stratification with the logarithm of the optical depth of the line-to-
continuum absorption coefficient ratio, η0, the Doppler width of the line, �λD,
and the damping parameter, a, in the HSRA model with B = 1000 G, θ = 60◦,
ϕ = 80◦, and a zero macroturbulence (left panels) or ξmac = 0.6 km s−1 (right
panels). The authors carried out a numerical experiment where synthetic profiles
(in these model atmospheres) fed the Milne–Eddington inversion technique that,
among other things, provides measurements of these parameters. The dashed ar-
rows indicate the theoretical heights of formation for the measurements whereas
the solid arrows point to the optical depths where the values actually retrieved
by the technique coincide with the stratification of the quantity. Note the very
nice agreement between theoretical predictions and experimental results, although
some cross-talk between the parameters induce measurable deviations. The larger
deviations in the right-column panels arise from the presence of macroturbulence
that is not foreseen by the Milne–Eddington technique.



Fig. 10.14. Stratification of η0, �λD, and a (solid lines) and generalized response func-
tions (dashed lines) of the Milne–Eddington inversion technique to perturbations of these
quantities. Dashed arrows point to the predicted heights of formation, and solid arrows to
the retrieved values from the Milne–Eddington technique. The two columns differ only
in the macroturbulence velocity. The results come from numerical experiments. From
Westendorp Plaza et al. (1998).
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Inversion of the RTE

—“Would you tell me, please, which way I ought to go from here?”, said Alice. —“That
depends a good deal on where you want to get to”, said the Cat. —“I don’t much care
where”, said Alice. —“Then it doesn’t matter which way you go”, said the Cat.

—Lewis Carroll, 1865.

Once one has a solution of the RTE, the most simple procedure of inference can
be devised such that a comparison between calculated and observed Stokes spectra
suggests modifications in prescribed models of the medium. Iteratively improved
models refine the match between observations and theoretical calculations. When
the match is good enough, the last model in the iteration is taken as a model of
the medium and its characteristic parameters are the inferred parameters of the
medium. This trial-and-error method may be useful when the model medium is
very simple and contains just a few free parameters. Note that every change of a
given free parameter implies an integration of the RTE which is a process requir-
ing a great deal of computer time. If the number of free parameters is large, the
manual trial-and-error method can become impracticable, but even automated trial-
and-error procedures that modify the various parameters randomly (blindly) may
not converge to a physically reasonable final model of the medium. The results may
even seem reasonable but be greatly in error. As an illustration of this last possibil-
ity, Fig. 11.1 shows the Stokes V profile of the Fe I line at 630.25 nm synthesized
in two model atmospheres. The open circles correspond to a model 2000 K cooler
than the penumbral model of del Toro Iniesta et al. (1994) already used in previous
chapters. To this model in hydrostatic equilibrium, a constant longitudinal mag-
netic field of 800 G and a macroturbulence velocity of 1 km s−1 have been added.
The solid line corresponds to a similar model but 300 K hotter, with a magnetic
field weaker by 270 G, and with a macroturbulence velocity 0.185 km s−1 higher.
If the first profile were the observations and the second profile the trial-and-error

199
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Fig. 11.1. Open circles: Stokes V profile of the Fe I line at 630.25 nm synthesized in a
model atmosphere in hydrostatic equilibrium, 2000 K cooler than the del Toro Iniesta et al.
(1994) model, with a constant longitudinal magnetic field of 800 G and a macroturbulence
velocity of 1 km s−1. Solid line: Stokes V profile of the same line, synthesized in a model
atmosphere 300 K hotter that the former, 270 G weaker, and with a higher macroturbulence
velocity of 1.185 km s−1.

fit, the inferred model atmosphere should be completely wrong. We can attribute
the wrongness of the result to cross-talk among the free parameters: in this parti-
cular case, an increase in T produces similar effects to a decrease in B plus a touch
of ξmac. This cross-talk is not always the same but, in general, one must be cautious
when trying to reproduce the observations by sequentially modifying the various
free parameters.

An extreme example of a very simple model and inference is provided by the
measurement of material velocities through that of line-core shifts. Here, the model
is such that no other physical quantity is thought to have an influence on the posi-
tion of the line, and the line-of-sight velocity is assumed constant throughout the
optical path. The model is so simple that no iterative procedure is even needed:
the core shifts can be directly calibrated to velocity units by means of the Doppler
formula. No further considerations are needed. However, simplicity does not imply
suitability for every particular observation: the hypotheses may be inapplicable to
given observed features. For example, the meaning of the measurement is not so
clear when a gradient of velocity with depth is present in the atmosphere. On
the other hand, we may be able to measure velocities but may also be interested
in magnetic fields, temperatures, etc. Therefore, more elaborate models are often
used because they cover broader ranges of applicability and allow us to retrieve
several free parameters at the same time. An example is the reproduction of the
four Stokes profiles of a few lines with a Milne–Eddington model of the medium
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where the number of free parameters† is ten. More detailed models of the medium
can be thought of, however. Consider, for instance, a model atmosphere like that
of Eq. (9.1) where T , pe, vLOS, B, θ , and ϕ are specified in an optical depth grid of
40 points. The total number of free parameters of this model is 243 if constant ξmic

and ξmac are assumed and a filling factor or stray-light parameter, f , is added. It is
clear that we do not know which parameter and how much it should be modified in
each step of the iterative procedure in order to approach the solution. Obviously,
special strategies must be designed to deal with such a huge number of free para-
meters. Moreover, current instruments provide enormous amounts of data in very
short times. Typically, several thousands or tens of thousands of such Stokes spec-
tra are obtained in, say, half an hour. The use of automatic procedures is therefore
mandatory.

11.1 The χ2 merit function

As in many other branches of physics, let us assume that the Stokes profiles belong
to L2, i.e., that they are square integrable.‡ The natural distance between, for
example, the two Stokes profiles Q1 and Q2 is then their quadratic distance,∫ ∞

−∞
|Q1(λ) − Q2(λ)|2 dλ.

Our goal in the derivation of a physically meaningful model of the medium is to
find a synthetic Stokes spectrum as close to the observed spectrum as possible. The
model parameters of the synthetic spectrum will be the inferred parameters of the
medium. Therefore, we shall resort to evaluating quadratic distances, as the reader
may have already guessed.

Since we deal in practice with discrete samples of the Stokes profiles, consider
a mean quadratic distance between the observed and the synthetic Stokes profiles
given by a merit function such as

χ2(x) ≡ 1

ν

3∑
s=0

q∑
i=1

[
I obs
s (λi ) − I syn

s (λi ; x)
]2

w2
s,i , (11.1)

where s scans the four Stokes parameters and i the wavelength samples, and ν

stands for the number of degrees of freedom, that is, the difference between the
number of observables (4q) and that of the free parameters. Normalization by ν

may be used as a “warning key” to remember that the number of free parameters

† Besides the nine free parameters mentioned in Section 9.4.1, actual Milne–Eddington techniques use another
parameter that accounts for lack of spatial resolution or stray-light contamination of the observations.

‡ In fact, Stokes I do not belong to L2 but Ic − I does. If the reader prefers, he or she can assume local square
integrability of I, i.e., that the integrals exist over finite wavelength ranges.
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cannot be unreasonably large; it permits a comparison among fits with different
numbers of free parameters. The coefficients ws,i can be used in practice in order
to weight some data more than others; for instance, they can be the inverse of
measurement errors.

Equation (11.1) shows the χ2 merit function as a scalar field in, for example, a
243-dimensional space! If we want to minimize the distance between observed and
synthetic spectra, we face a formidable problem. Unlike Alice in Wonderland, we
do care where we go and must therefore examine thoroughly all the possible paths
and directions; in other words, we need to know the derivatives of χ2 with respect
to the free parameters. Inversion techniques are understood as those automated
procedures bringing χ2 to a physically meaningful minimum. Certainly, after the
discussions of the present section, the reader may guess that inversion techniques
may not simply be “automated trial-and-error techniques”. Indeed, the specific
technique we are discussing in this chapter is just one among several other possible
(and conceivable) techniques for attacking the problem.

Before going into the mathematical details of the inversion technique, let us di-
gress a little on the physical details of the problem. As anticipated in Chapter 10,
the radiative transfer equation is the only available tool to succeed in modeling the
medium. However, from a diagnostic point of view, it is unfortunate that the RTE
is a differential equation with the Stokes spectrum as the unknown. The true un-
knowns for the observer are the free parameters of the model medium and they are
included (through intricate non-linear dependences) in the RTE “coefficients”: the
propagation matrix and the source function vector. Thus, it is advisable to invert
the radiative transfer equation and think of the formal solution, Eq. (9.20), as an
integral equation where the true unknowns are in the integrand, and the Stokes
spectrum does not play the role of an unknown but that of the observable. More
specifically, Eq. (10.20), which explicitly gives the relationship between the modi-
fications of the model parameters and the changes in the Stokes spectrum, contains
all the necessary ingredients to move through the space of free parameters, as we
shall see.

11.1.1 Derivatives of the χ2 merit function

A perturbation of the Stokes parameters implies a modification of the χ2 merit
function given by

δχ2 = 2

ν

3∑
s=0

q∑
i=1

[
I syn
s (λi ) − I obs

s (λi ; x)
]
w2

s,i δ I syn
s (λi ; x), (11.2)

where δ I syn
s (λi ; x) is obtained from Eq. (10.20) or, numerically, from Eq. (10.21).
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From a numerical point of view, considering the elements of the model atmo-
sphere as depending on just one index is convenient since all the individual values
of every physical quantity at each optical depth are considered as independent free
parameters. Hence, we shall substitute xi (τ j ) by x p, where p = (i − 1)n + j , n
being the number of optical depth grid points. That is, p runs throughout the atmo-
sphere for one physical quantity, then for another quantity, and so on. Certainly,
p runs from 1 to nm + r , m being the number of physical quantities varying with
depth and r that of the quantities which are constant (xm+i , with i = 1, 2, . . . , r ).
The same index contraction is useful for denoting response functions, so that we
shall hereafter write Rp(λl) instead of

�(log τc) ln 10 c jτ j Ri (λl; τ j )

or

R′
m+i (λl),

the latter being the case for response functions to constant physical quantities.
With this simplified notation, Eq. (10.21) can be rewritten as

δI syn(λl; x) =
nm+r∑
p=1

Rp(λl) δx p, (11.3)

which clearly emphasizes the role of response functions as partial derivatives of
the Stokes spectrum with respect to the free parameters (which are assumed to be
continuous variables). In fact, in a Milne–Eddington model, where I(0) has an ana-
lytic expression, Rp is substituted by ∂I(0)/∂x p that can be calculated analytically
from Eq. (9.44).

After being introduced into Eq. (11.2), Eq. (11.3) gives

δχ2 =
nm+r∑
p=1

{
2

ν

3∑
s=0

q∑
i=1

[
I syn
s (λi ) − I obs

s (λi ; x)
]
w2

s,i Rp,s(λi )

}
δx p, (11.4)

where the factor within braces is the direct partial derivative of the χ2 merit func-
tion with respect to x p:

∂χ2

∂x p
= 2

ν

3∑
s=0

q∑
i=1

[
I syn
s (λi ) − I obs

s (λi ; x)
]
w2

s,i Rp,s(λi ). (11.5)

The second derivatives of χ2 are given by

∂2χ2

∂x p∂xk
= 2

ν

3∑
s=0

q∑
i=1

w2
s,i

{
Rp,s(λi ) Rk,s(λi ) + [

I syn
s − I obs

s

] ∂Rp,s

∂xk

}
(11.6)
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and, after neglecting the second term within braces, are approximated by

∂2χ2

∂x p∂xk
) 2

ν

3∑
s=0

q∑
i=1

w2
s,i [Rp,s(λi ) Rk,s(λi )]. (11.7)

The approximation is justified when either the derivative of Rp,s is small compared
to the first term or the difference in square brackets is small enough. The last case
may be applicable when one is fairly near the minimum because that difference
is expected to be close to the measurement error and hence uncorrelated with the
model, so that the summation tends to cancel out the terms. As is understood in
what follows, the second derivatives will be needed only when we are close to the
minimum.†

11.2 The Marquardt method

Iterative procedures are the cornerstone of fitting data to models that depend non-
linearly on the free parameters. Hence, we are dealing with an iteration whose
steps allow one to move through the (nm + r )-dimensional space of the parameters
in order to find a minimum of the χ2 merit function. When one is close enough to
the minimum, a parabolic expansion of χ2 can be expected to apply, so that

χ2(x + δx) ) χ2(x) + δxT (∇χ2 + H′δx), (11.8)

where, according to the general convention used in this book, a scalar product is
understood in the second term on the right-hand side, where the elements of the
gradient are given by Eq. (11.5), and where matrix H′ is one half of the Hessian
matrix, thus containing the second partial derivatives (H ′

i j = 1/2 ∂2χ2/∂xi∂x j )
made explicit in Eq. (11.7). If the second-order approximation is a good one, i.e.,
if we are very near the minimum of the merit function, then we can move to it by
simply equating the term in parentheses in Eq. (11.8) to zero:

∇χ2 + H′δx = 0, (11.9)

or, better,

δx = −H′−1∇χ2. (11.10)

If, however, we are far from the minimum and the approximation is not that good,
the best we can do is to take a step down the gradient, that is,

δx = a∇χ2, (11.11)

† In any case, according to Press et al. (1986), this approximation ensures numerical stability.
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where a must be a constant small enough not to lose the downhill path. The prob-
lem now is that we do not know the exact value of a, or at least its order of mag-
nitude. The key of the Levenberg–Marquardt method (also called the Marquardt
method) is the realization that the diagonal elements of the Hessian matrix pro-
vide such an idea of the value of a: note that if H′ were diagonal, Eqs (11.10) and
(11.11) would be formally identical:

δxi = − 1

H ′
i i

∇χ2.

But this scaling factor could still be too large, so the prescription is to divide it by
a fudge factor, λ, which eventually can be set much greater than unity in order to
reduce the step size. Therefore, if we keep just the gradient approximation, the
right motion in the parameter space is given by

δxi = − 1

λH ′
i i

∇χ2. (11.12)

Now, very importantly, Eqs (11.10) and (11.12) can be combined into one equa-
tion,

∇χ2 + H δx = 0, (11.13)

where the new matrix H is defined by

Hi j ≡



H ′
i j (1 + λ), if i = j,

H ′
i j , if i �= j.

(11.14)

Therefore, when λ is very large, the modified Hessian matrix is forced to be
quasi-diagonal so that the approximation is almost a first-order one [Eq. (11.12)].
If, however, λ becomes small, the second-order approximation applies. Then, by
simply choosing different values of λ we change the applicability range of each
step in the iteration. This feature is very helpful in practice. In fact, the following
recipe is that recommended by the Marquardt method:

(1) Evaluate χ2(x) with an initial guess at the model parameters.
(2) Take a modest value for λ, say λ = 10−3.
(3) Solve Eq. (11.13) for δx and evaluate χ2(x + δx).
(4) If χ2(x + δx) ≥ χ2(x) we were too far away from the minimum. There-

fore, increase λ significantly (by a factor of 10, say) and go back to step
number 3.

(5) If χ2(x + δx) ≤ χ2(x) we were fairly close to the minimum, so that a
decrease of λ (by a factor 10, for example) is recommended. Update the
trial solution x + δx −→ x and go back to step number 3.
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(6) To stop, wait until χ2 decreases negligibly (1%, 0.1%, say) once or twice.
Never stop when χ2 increases since λ is readjusting itself to its optimum
value.

11.2.1 Error calculation

Certainly, reaching the true minimum of the merit function is not guaranteed by
the method. At the end of the procedure we will be hopefully close enough to the
minimum so that the gradient term of Eq. (11.8) may be neglected and we may
write

�χ2 = δxTH′δx, (11.15)

where

�χ2 ≡ χ2(xmin) − χ2(x0) (11.16)

and

δx ≡ xmin − x0, (11.17)

xmin and x0 being the model found by the numerical algorithm and that model
where the true minimum of χ2 is located, respectively. Since x0 has not been
reached, the current value of �χ2 can be produced statistically by several different
models, xmin. Thus, the uncertainty of the inferred parameter xk will be an average
over all the possible realizations of the deviations δxk , namely,†

σ 2
k = 〈δx2

k 〉. (11.18)

Since H′ is real and symmetric, there always exists an orthogonal matrix X
(XXT = XTX = 11) that diagonalizes it:

� ≡ XH′XT, (11.19)

where � = diag (λ1, λ2, . . . , λnm+r ).
With this transformation, �χ2 can be written as

�χ2 = �T�� =
nm+r∑
p=1

λpπ
2
p, (11.20)

where, obviously,

� = Xδx, (11.21)

† All this section is based on Appendix B of a paper by Sánchez Almeida (1997).
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so that

δxk =
nm+r∑
p=1

X pkπp. (11.22)

Hence, if H′ is a good estimate of one half the “true” Hessian matrix (the Hessian
matrix at x0), the uncertainty in xk can be rewritten as

σ 2
k =

nm+r∑
l=1

nm+r∑
p=1

Xlk X pk〈πlπp〉 (11.23)

because matrix X is independent of the various realizations by hypothesis, and we
just have to calculate the averages 〈πlπp〉. To do that, note that Eq. (11.20) is indeed
the equation of a hypersphere in the (nm + r )-dimensional space of coordinates
πp

√
λp. Therefore, the averages are taken over its surface, whence 〈λkπ

2
k 〉 must be

the same for all k = 1, 2, . . . , nm + r . In fact, Eq. (11.20) gives

〈π2
k 〉 = �χ2

(nm + r)λk
. (11.24)

Notice also that

〈πkπl〉 = 0 if k �= l (11.25)

because if Eq. (11.20) holds for �, it also holds for �′ such that all the components
are equal to those of � except for one which is opposite. In summary,

〈πkπl〉 = �χ2

(nm + r)λk
δkl, (11.26)

where δkl is the Kronecker delta, whence

σ 2
k = �χ2

nm + r

nm+r∑
p=1

X2
pk

λp
. (11.27)

The sum in Eq. (11.27) is easily identifiable as the k-th diagonal element of the
inverse matrix of H′. In fact, Eq. (11.19) implies that

[
H′−1

]
i j

=
nm+r∑
p=1

X pi X pj

λp
. (11.28)

Therefore,

σ 2
k = �χ2

nm + r

[
H′−1

]
kk
. (11.29)
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An estimate of this uncertainty σ 2
p of the inferred parameter x p is given by†

σ 2
p ) 2

nm + r

3∑
s=0

q∑
i=1

[
I syn
s (λi ) − I obs

s (λi )
]2

w2
s,i

3∑
s=0

q∑
i=1

R2
p,s(λi ) w

2
s,i

, (11.30)

where �χ2 has been approximated by χ2(xmin). The estimate is strictly valid only
if H′ is diagonal: we have substituted the inverse diagonal elements of H′ for the
diagonal elements of H′−1.

11.2.2 Problems in practice

Except for the adaptation of the gradient and Hessian to the expressions of
Section 11.1.1 involving response functions, the Marquardt method, as explained
so far, is completely general. Depending on the realization, however, one faces
different practical problems. One cannot expect to find the same difficulties when
dealing with a Milne–Eddington model of the free parameters as when dealing with
a model that acknowledges the variation with optical depth of physical quantities.
We are addressing our discussion to the latter case.‡

The two most important problems are related to the calculation of H−1. First,
matrix H may be huge (243 × 243, for example) and inverting such enormous
matrices is not an easy numerical task. Second, matrix H may be quasi-singular or
numerically singular because of the different sensitivities of the Stokes spectrum
to the various free parameters: we already know, for instance, that I is sensitive
only to temperature in the very low layers of the atmosphere; hence the terms of
the Hessian matrix involving, for example, the response function to perturbations
of B at log τc ≥ 0, will be very approximately zero. To solve the first problem
one can use successive approximation cycles in each of which the number of free
parameters increases as the minimum of χ2 is approached more and more. The first
cycle works with a reasonable minimum number of parameters; then the number
is increased for the second cycle, and so on. Besides, assumptions concerning the
optical path dependence of the physical quantities of the model must be made. With
regard to the second problem, the inversion of quasi-singular matrices is possible
through the singular value decomposition (SVD) technique. However, a direct
use of SVD is not convenient to our specific problem of radiative transfer and

† This estimate has already been used, and its reliability checked, in practice (e.g., Westendorp Plaza et al.,
2001).

‡ In fact, we are going to explain the special strategies designed for the so-called SIR technique of Ruiz Cobo
and del Toro Iniesta (1992). SIR is the acronym for Stokes Inversion based on Response functions.
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will be modified. The large difference in sensitivity of the Stokes spectrum to
the various free parameters may result in some of them being neglected and their
values forgotten during the inversion: the inclination angle, θ , of the magnetic field
with respect to the line of sight may be less significant (its RF smaller) than the
temperature, but we are also interested in inferring the θ values. Both the problems
and the solutions will be better understood in the following two sections.

11.3 Parameters at the nodes and equivalent response functions

As mentioned above, the first problem we have to face is the large dimensions the
Hessian matrix may have. There can be many ways of eliminating (or fixing) some
of the free parameters. The reader is referred to the reviews cited in the recom-
mended bibliography at the end of the chapter for finding the relevant literature on
the subject. Let us concentrate here on the strategy proposed for the SIR technique
that has been amply checked in practice with both synthetic and real data.

To understand the principles of the algorithm, assume that we are just dealing
with one physical quantity varying with optical depth throughout the atmosphere
(m = 1; r = 0). We shall reduce the number of free parameters by simply binding
them all through an interpolation relationship. We shall assume that the perturba-
tions, δxk (k = 1, 2, . . . , n), follow a given interpolation formula so that we need
only deal with perturbations of a few depth grid points called nodes. Let n′ be the
number of such nodes. Obviously, n′ ≤ n, so that a reduction by a factor n′/n is
effected over the Hessian matrix dimensions.

Let δyl be the perturbation at the l-th node. Thus,

δyl = δx p with p = 1 + (l − 1)
(n − 1)

n′ − 1
, (11.31)

where we can clearly appreciate that, by convention, the first and the last points
of the grid (p = 1 and p = n) are nodes except when n′ = 1 (when the above
expression loses its meaning), in which case the perturbations are assumed to be
constant throughout. Also, the relationship between p and l tells us that the possi-
ble number of nodes for a given grid is governed by the number of divisors of n−1.
Assume that the perturbations at the various points are given by interpolation of the
perturbations at the nodes:

δxk =
n′∑

l=1

sk,lδyl, (11.32)

where sk,l are coefficients that depend only on the ratio n/n′. Their specific values
may be changed depending on the interpolation algorithm (e.g., cubic splines), but
the interesting point in Eq. (11.32) is that we can express all the perturbations with
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the values of a few of them. Obviously, according to Eq. (11.31),

sp,l = 1 when p = 1 + (l − 1)
(n − 1)

n′ − 1
. (11.33)

The interpolation formula (11.32) governs the stratification with depth of the
perturbations to a given physical quantity. Since the coefficients depend only on
n/n′, one may know the specific stratification by simply knowing n′. This is so
because of the convention that the first and the last points of the grids are nodes.
For example, within a given interpolation scheme, when n′ = 1, constant perturba-
tions are assumed that are taken to be equal to the mean of all perturbations; when
n′ = 2, the perturbations are supposed to follow a straight line passing through the
perturbations at the nodes; when n′ = 3, the perturbations vary parabolically with
optical depth, and higher-order polynomials when n′ ≥ 3. It is important to remark
that the interpolation approximation constrains the possible stratifications of the
perturbations, not those of the physical quantities. If n′ = 1, this means only that
(x1, x2, . . . , xn) will be modified during the whole procedure by constant perturba-
tions, δxi = a, ∀ i = 1, 2, . . . , n, to a final model (x1 + a, x2 + a, . . . , xn + a),
but if the original model were parabolic (or sinusoidal), the final model would
also be parabolic (or sinusoidal). The variation with depth of the perturbations de-
pends on the coefficients sp,l , but the variation with depth of the model parameters
is independent of these coefficients. Thus, reducing the number of free parameters
does not imply reducing the allowed complexity of the stratification of the physical
quantities through the atmosphere.

So far, we have dealt with just one physical quantity, but the concept of nodes
and the interpolation approximation can certainly be extended to all the quantities
relevant to line formation. The number, n′, of nodes for temperature, for example,
can indeed be different from that for the magnetic field strength or the line-of-sight
velocity. In fact, those quantities assumed constant with optical depth, or which
are single-valued, must necessarily have n′ = 1 independently of the remainder.
We shall assume here, however, that n′ is the same for all the quantities that are
functions of log τc in order not to complicate the notation. With this assumption,
introducing Eq. (11.32) into Eq. (11.3), we get

δIsyn(λl; x) =
m−1∑
i=0

n∑
p=1

Rin+p(λl)

n′∑
k=1

sin+p,in′+k δyin′+k

+
r∑

p=1

Rnm+p(λl) δyn′m+p,

(11.34)

where we have explicitly split index p in two in order to see better that the
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interpolation is carried out for every physical quantity that varies with optical depth.
The second term corresponds to the constant quantities and, hence, each one is rep-
resented by one node. Note that, indeed, sin+p,in′+k = sp,k since the interpolation
coefficients are “periodic”: in the first index with a “period” n and in the second
index with a “period” n′. Changing the order of summation, Eq. (11.34) becomes

δIsyn(λl; x) =
m−1∑
i=0

n′∑
k=1

{
n∑

p=1

sin+p,in′+k Rin+p(λl)

}
δyin′+k

+
r∑

k=1

Rnm+k(λl) δyn′m+k .

(11.35)

Now, we can define the equivalent response functions at the nodes as

R̃in′+k ≡




n∑
p=1

sin+p,in′+k Rin+p(λl), if i < m,

Rni+k(λl), if i = m,

(11.36)

and with this definition we can finally write

δIsyn(λl; x) =
n′m+r∑

p=1

R̃p(λl) δyp. (11.37)

The formal analogy between Eq. (11.37) and Eq. (11.3) is conspicuous so that
we clearly understand our simplification of a problem with nm + r free parameters
in terms of another with n′m + r free parameters. We can now follow all the steps
from Section 11.1.1 through Section 11.2.1 after changing the starting equation.
Note that the equivalent response functions at the nodes are indeed linear combi-
nations of the response functions at all the points in the optical depth grid so that
we are in fact using information from the whole atmosphere, although weighted by
the interpolation coefficients. This is a very important and advantageous property.
Since R̃p is a linear combination of all the RFs throughout the atmosphere, param-
eters cannot be wildly varied because the whole stratification matters. Even those
nodes with originally negligible response functions may now have sizable equiv-
alent response functions: the shape of the corresponding quantity as a function of
depth is somehow included in R̃p.

Let H̃ be the new modified Hessian matrix, that is, a matrix built like H but from
a Hessian matrix which contains the equivalent response functions. The Marquardt
equation (11.13) then transforms to

∇χ2 + H̃ δy = 0, (11.38)

where we deal only with perturbations at the nodes.
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The interpolation approximation is very useful for dividing the whole inversion
procedure into separate cycles, each having a given number of nodes. In this way,
a successive approximation can be performed if n′ is increased from cycle to cycle.
Although experience usually counsels a good starting guess model, it seems natural
that this guess model may be quite far from the “true” one. If so, then a large n′

might produce unwanted ripples in the stratification of the quantities: we may be
too far from the χ2 minimum so that errors in one free parameter are canceled
out by errors in another. Therefore, when no previous knowledge of the actual
atmosphere is available (as, for instance, during the inversion of a huge data set of
spectropolarimetric observations), it is advisable to start with a cycle of iterations
with n′ = 1 or 2. Then, when the minimum with such conditions has been reached,
a second cycle can be carried out with a larger n′, and so on.

11.4 Less significant parameters and singular value decomposition

The second problem mentioned in Section 11.2.2 is related to the possible singu-
larities of the modified Hessian matrix H̃. Since we need to solve Eq. (11.38) for
the perturbations, δy, H̃ has to be inverted:

δyk = −
n′m+r∑

j=1

[
H̃

−1
]

k j

∂χ2

∂y j
. (11.39)

If H̃ is singular or numerically quasi-singular, the inversion cannot be performed.
This is probably the case since we already know that the Stokes spectrum may
be poorly sensitive to perturbations of certain physical quantities at certain optical
depths. Some of those optical depths with small (equivalent) response functions
are necessarily included in the numerical depth grid. Thus, several elements, and
maybe some rows or columns, are probably close to zero or, even more probably,
much smaller than others. As we shall see, this induces quasi-singularities of H̃.

The numerical problem of inverting quasi-singular matrices is already solved
with a number of techniques, among which the SVD technique provides the best
solution in the least-squares sense (see Press et al. 1986), that is, it minimizes
|∇χ2 + H̃ δy|2. In our particular case, since H̃ is real and symmetric by construc-
tion, the SVD technique is based on its diagonalization.† There always exists an
orthogonal matrix Y (YTY = YYT = 11) such that

� ≡ YH̃YT, (11.40)

or

H̃ = YT�Y, (11.41)

† The theorem of linear algebra underlying SVD is indeed more general and we do not discuss it here.
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where � = diag(γ1, γ2, . . . , γn′m+r ) and γi are the eigenvalues of matrix H̃, each
associated with one free parameter. The inverse of the modified Hessian matrix is
thus given by

H̃
−1 = YT�−1Y (11.42)

and certainly depends on the inverse of the H̃ eigenvalues. If γk = 0, then its
inverse goes to infinity and our matrix is singular. Besides strict singularity, the
matrix is quasi-singular or ill-conditioned when the ratio between the largest and
the lowest eigenvalue is so large that it approaches the machine’s floating point
precision.

The prescription of SVD for inverting H̃ is just to replace 1/γk by zero, whenever
γk is considered too small. Let, then, ε be a tolerance such that

γk ≤ ε max{γi , i = 1, 2, . . . , n′m + r} −→ 1

γk
= 0. (11.43)

As a consequence of zeroing 1/γk , the k-th free parameter does not contribute to
the perturbations since, according to Eq. (11.42),

[
H̃

−1
]

i j
=

n′m+r∑
p=1

Ypi Ypj

γp
. (11.44)

Thus, if the tolerance is too large, the rank of H̃ will be small, and the solution
(11.39) will be fairly smooth. However, just a few free parameters will be affected.
If ε is too small, “noisy” solutions are expected. In practice, ε takes values between
10−3 and 10−6.

The neglecting of the smallest eigenvalues of matrix H̃ in SVD introduces a new
problem. In general, these small γk’s are associated with those physical quantities
whose perturbations produce small modifications in the Stokes spectrum, but al-
though these quantities are perhaps less significant than others, it is nevertheless
important that they be derived. I may be less sensitive to perturbations of θ or
ϕ than to perturbations of B, but all three (B, θ , and ϕ) are needed to define the
vector magnetic field. After the discussions in Chapter 10, where temperature was
shown to be by far the most important quantity of line formation, the reader may
understand that there exist some values of ε for which B or vLOS might become
unaffected through the whole inversion procedure. Although subtle on some occa-
sions, the influence of the magnetic field or of the line-of-sight velocity cannot be
neglected. Thus, a new strategy must be devised.
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11.4.1 Modified singular value decomposition

If all these (quantitatively) less significant parameters have to be derived, one needs
a way of discriminating among the various quantities and then among the values
of each quantity at the different optical depths. The identification of the several
free parameters is indeed not a difficult task. By construction of the vector model
atmosphere, y, we already know that

ni ≡



(i − 1)n′ + 1, if 1 ≤ i ≤ m,

(n′ − 1)m + i, if m < i ≤ m + r,
(11.45)

is the index of the first free parameter of the quantity number i . Note that the upper
row of the definition (11.45) corresponds to physical quantities which vary with
optical depth; the lower row corresponds to constant or single-valued quantities.

Therefore, it is possible to decompose δy as a sum,

δy =
m+r∑
i=1

δyi , (11.46)

of m + r vectors of n′m + r components each but with zeroes everywhere except
in those elements corresponding to a given quantity:

δyi
j ≡




δy j , if ni ≤ j < ni+1,

0, otherwise.
(11.47)

Let us now decompose matrix H̃ as a sum of matrices such that each acts on one
and only one δyi . To do that, define m + r matrices Yi such that

Y i
jk ≡




Y jk, if ni ≤ j < ni+1,

0, otherwise.
(11.48)

With this definition,

Y =
m+r∑
i=1

Yi (11.49)

and

Yi T
δy = YT δyi . (11.50)

Let �i be defined as

�i ≡ �Yi T
Y, (11.51)
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so that, trivially,

m+r∑
i=1

�i = �. (11.52)

Matrix �i turns out to be that component of � which acts only on δyi because, if
we call

H̃
i ≡ Y�i YT, (11.53)

we then have from Eq. (11.51) that

H̃
i
δy = Y�Yi T

YYTδy; (11.54)

from the orthogonality of matrix Y,

H̃
i
δy = Y�Yi T

δy, (11.55)

and from Eq. (11.50),

H̃
i
δy = H̃ δyi . (11.56)

We have thus isolated the action of the modified Hessian matrix on the various
physical quantities. Therefore, we can manipulate every matrix �i as one does
normally through the regular SVD technique. Those diagonal matrix elements that
are smaller than the tolerance multiplied by the maximum diagonal element will
be zeroed:

!i
j j ≤ ε max{!i

kk} −→ !i
j j = 0. (11.57)

Since, according to Eq. (11.52), the eigenvalues of H̃ are sums of !i
j j ’s,

γk =
m+r∑
i=1

!i
kk, (11.58)

when inverting H̃ we shall proceed by zeroing those 1/γk’s whose γk = 0:

γk = 0 −→ 1

γk
= 0. (11.59)

With this modified singular value decomposition technique, we ensure that at
least one free parameter (one node) of every physical quantity is taken into account
in each iteration, so that it will be modified according to its significance, that is, to
the relative weight of its equivalent response function.
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Fig. 11.2. Stokes profiles of three infrared Fe I lines at 1558.83, 1559.01, and 1559.07 nm
(the latter two are blended) as observed with TIP on two penumbral points of a sunspot.
Dots are the observations and the fit with SIR is shown in solid lines. From del Toro Iniesta
et al. (2001).

11.5 An example

This section is devoted to giving just a flavor of the use of SIR for analyzing
real spectropolarimetric data. Of the many examples that could have been given,
only one has been selected because it somehow points to the future. Figures 11.2
and 11.3 show the results of SIR for two points in the penumbra of a sunspot as
observed with TIP (see Section 5.3.3). Three Fe I lines at 1558.83, 1559.01, and
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Fig. 11.3. Two-component model atmosphere which produces the fitted Stokes profiles on
the left column of Figure 11.2. The model physical quantities are represented by solid
lines. Uncertainty ranges are shown as shadings. The dashed line of the velocity panel
indicates the local speed of sound. From del Toro Iniesta et al. (2001).

1559.07 nm are observed and inverted (the latter two are blended). In these particu-
lar two cases, the model atmosphere consists of two components, each with its own
stratification of the physical quantities and discernible in Fig. 11.3 with a different
shading of the uncertainties. The astronomical implications of the results are to be
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found in the original paper. Here we are interested simply in commenting on the re-
liability of the results. Remarkably, although the remaining physical quantities are
not reliable below log τc = 0 and above log τc = −1.5, the temperature has very
small uncertainties in the lowest layers. The reasons for this feature are twofold:
first, the sensitivity of the Stokes spectrum to temperature perturbations in low lay-
ers is most significant because of the tendency limτc→∞(I − S) = 0 as commented
on in Section 10.3.2.2; second, the use of equivalent response functions at the nodes
not only permits the weighting of the specific value of T at a given optical depth but
also imposes requirements on the gradient of T by considering a linear combina-
tion of the RFs throughout the whole atmosphere. The original RF for temperature
perturbations at log τc = 1 is possibly zero, but the equivalent response functions
at this node are certainly not.

11.6 Current and future inversion techniques

The SIR inversion technique described so far is certainly not the only one avail-
able. SIR has been used here as an exemplary case of the inversion philosophy.
The foundations of, for instance, the Milne–Eddington technique of Skumanich
and Lites (1987) can be guessed at from the equations presented in this chapter.
Both SIR and the Milne–Eddington technique have been extensively tested with
synthetic data in order to find their range of applicability, reliability, and stabil-
ity, the uniqueness of the results, etc. Of course, the numerical details are beyond
the scope of this book. Extensions and further developments of SIR itself have
been implemented already [see Bellot Rubio (1998) and Socas Navarro (1999)],
but cannot be discussed here.

Significantly different strategies of inversion can be devised and, in fact, are be-
ginning to appear in the literature and promise to ease an ever increasing problem:
the advent of new instruments, both ground-based and space-borne, produces huge
amounts of data that demand accurate analysis. The interested reader is invited to
find many examples of the application of inversion techniques in the recommended
bibliography and in the ever-growing literature: inversion techniques are a matter
of continuous research and development.
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magnétique solaire et stellaire. N. Mein and S. Sahal-Bréchot (eds.) (Observatoire de
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