
Mean-field dynamo scenarios 1/25

Aims :

1. Effects of flows on the magnetic field in high conductive plasma

2. Anti-dynamo theorem

3. Dynamo scenarios

¡ Solar type dynamo

¡ �2 dynamo

¡ cross-helicity dynamo?



Action of the plasma flow on the magnetic flux 2/25

Magnetic flux is frozen in plasma flow if dif-
fusion term is neglected. Let �=

R
B � dS.

The change of the flux is due to change of
the induction @B
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and due to the moving
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Figure 1.

Using vector calculus identity the induction equation can be rewritten as follows:

stretching compression advection diffusion
@B
@t

= (B � r)u ¡B(r�u) ¡(u � r)B +��B



Compression and advection 3/25



Compression and advection, SDO/HMI, 17/10/2016 4/25



Stretching 5/25

Consider the cylindrical coordinate
system: r; �; z, axisymmetric rotational
flow: (0; r
(r; z); 0), then the toroidal
field is winding from poloidal by DR:

@B�

@t
= r(Bp �r)
; (1)

@Bp

@t
= 0

Bp = erBr+ ezBz

The steady state is known as the Ferraro law: (Bp �r)
. The production of the
net flux of the toroidal field in Eq.(12): d

dt

R
B�dSm=0!



Large-scale unipolar field stretched by DR, courtesy SSO 6/25



Anti-dynamo theorem 7/25

Suppose that we allow for both poloidal and azimuthal velocity and magnetic fields, which may
be steady or unsteady, but which are axisymmetric:

B=Bp+B�;U =U p+U �

Then the induction equation can be divided fo the poloidal and toroidal parts:

@tB
� = r� (U ��Bp+U p�B�)+ ��B�;

@tB
p = r� (U p�Bp)¡r� �r�Bp

Using cylindrical coordinates and Bp=r� r¡1Ae', and U'=e'r
:

dB�

dt
= r(Bp �r)
+ �r2B';
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(rA)2dV < 0;



Anti-dynamo theorem 8/25

Therefore, A decays with time and B' will decay eventually as well:

dB�

dt
= r(Bp �r)sin�
+ �r2B'

Cowling's neutral point argument.

Suppose that we seek a steady, axisym-
metric dynamo in which Bp is poloidal, J is
azimuthal, and U p is also poloidal, @tBp=
0, in vicinity C" it should be:Z

(U p�Bp)dS"= �

I
C"

Bpdr

The right part scales as "� jB"
pj, and the left

part scales as "2jU"
pjjB"

pj, decrease faster. so,Z
(U p�Bp)dS< �

I
Bpdr

Induction effect of U p � Bp does not
compensate diffusion.



Dynamo scenarios 9/25

Stretch-twist fold dynamo Zeldovich 1966

� Magnetic field is frozen-in a high conductive turbulent fluid.

� Breaking reflection symmetry of turbulent motions.

¡ This can result in spontaneous self-induction of magnetic field

Reconnection and diffusion are important part of dynamo instability



Solar case 10/25

Linear stage Nonlinear stage



Solar dynamo scenarios 11/25



Observational restrictions on the solar dynamo scenarios 12/25

¡ jBpj� jBtj, where strength of the polar magnetic field during solar minims quantifies Bp

and Bt is estimated by the magnetic field of the bipolar active regions

¡ Dynamo period and surface time-latitude diagrams

¡ Phase relations between polar and equatorial Bp and Bt also in space distributions, for
example , BrB'< 0 in the normal BMR for the magnetic activity maximum

¡ Extended 20 yr mode in Br (Stenflo 1994) and in the torsional oscillations (Ulrich 1998)

¡ Axisymmetric spherical harmonics spectrum (and phase of spherical harmonics)

hBri
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General properties of the dynamo solution



Short waves approximation 15/25

Let us consider the isotropic � effect and turbulent diffusion, and the shear is unidorm:

@thBi = r� (E + hU i� hBi);
E = hu�bi = �hBi¡ �Tr�hBi;

hBi= e'B+r� e'A; hU i= e'(r �S); (e' �S)= 0

After substitution:

@e'B
@t

= (Bp �r )(e'(r �S))¡ �Tr�r�B e'

@e'A
@t

= �e'B ¡ �Tr�r�A e'

Use the eigen-wave representation: B;A� exp(�t+ ik � r) and k � e'=0. Note, that

@e'A
@t

!�e'A;r�e'A! ik� e';r�r�A e'!¡�Tk2Ae';

Therefore

�B = ¡i(k�S) � e'A¡ �Tk2B
�A = �B ¡ �Tk2A



Then compatibility condition determine the eigen values:���������� �+ �Tk
2 i(k�S) � e'
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2

����������=0

The growing modes have Re(�)> 0. The solution of the determinant is

(�+ �Tk
2)2=¡i�(k�S) � e'

There are two roots: depending on the sign of �(k�S) � e':
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Suppose that � =  ¡ i!, then, the dynamo frequency is ! =� 1

2
j�(k�S) � e'j

q
and the

normalized increment is
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;



where, D= �S

�T
2k3

is the dynamo number, and  is angle between k and the shear vector S.

Note, that, S� @r

@r

�
,

Wave propagation. Note, that k show propagation of phase of the dynamo wave. Therefore,
the increment ̂ has maximum for  = �/2, i.e, the maximum of the dynamo efficiency is
attained in direction which is perpendicular to the shear, in other words along the isorotation
surface. This is the Parker-Yoshimura rule.

Wave frequency (Cycle period).

a)Linear growth. Consider the wavelength with maximum growth rate, i.e., consider wave with

extreme of =¡�Tk2+
�k

2

r
, (Brandenburg et al 2017)
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b) Saturation. The efficient dynamo number is close to the critical, !cyc� �Tk
2 - the cycle

period is determine by the turbulent diffusion and it is independent of 
.



Dependence of cycle period on stellar rotation rate 16/25

Red and black crosses show the results of
Brandenburg et al. (2017), green crosses those
of Lehtinen et al. (2016), orange squares the
models of Warnecke (2018), and the asterisks
are from the models of Pipin (2021);act/inact
marks the active and inactive branches of
activity, respectively; while kin/nkin stand for
kinematic and non-kinematic models, respec-
tively. Note that Co=2
�c, we employ ��

�c . So, for the rate:

!cyc
!rot

�Co1/3�T
¡1/6 active

!cyc
!rot

�Co¡1 saturated



The �2 dynamo 17/25

Theoretical expectations about �2 dynamo:

1) Steady. Evidence for the cyclic dynamo from DNS (Brandenburg et al 2015)

2) Toroidal and poloidal components have comparable magnitude (Raedler 1986)

3) Non-axisymmetric magnetic field grows faster than axisymmetric one



The �2 dynamo 18/25

Here, we assume that � effect is isotropic, i.e. �pp=�''. After substitution:

@e'B
@t

= r��r�Ae'¡ �Tr�r�Be'

@e'A
@t

= �e'B ¡ �Tr�r�Ae'

Use the eigen-wave representation: B; A� exp(�t+ ik � r). Proceeding in the similar way as
previously we get

�B = �k2A¡ �Tk2B
�A = �B ¡ �Tk2A

Then compatibility condition determine the eigen values:���������� �+ �Tk
2 ¡�k2

¡� �+ �Tk
2

����������=0



The growing modes have Re(�)> 0. The solution of the determinant is

�=�k¡ �Tk2

For the growing mode �> �Tk, no wave, a stationary dynamo. The maximum generation rate
wavelength is k=�/2�T .



Stellar activity magnitude, X-ray 19/25

For the partially convective stars we can expect
�
 dynamo and for the fully convective- �2

In the linear regime the growth rate for the
�
 dynamo is

�
�
�
�

2

�
2/3

�
1
4�T

�
1/6

�
4/3

and for �2
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Here we do not take into account �T(
)



Effect of rotation on the turbulence 20/25

The large Reynolds number limit. Consider the forced turbulence

u

�c
� 2u�
+ u(0)

�c
� � �

Let us divide the flow into sum along and perpendicular to the rotation axis:

u=u?+uk;u?=u¡



2

(u �
);uk=



2

(u �
)

Assume that in the background turbulence (without global rotation) is isotropic, hu?
(0)2i =

huk
(0)2i. Then

(�ij¡ 2�c"ijn
n)u?j = u?i
(0);uki=uki

(0)

Consider intensity of turbulent flows, hu?2 i and huk2i under effect of the global rotation:

(1+ 4�c2
2)hu?2 i = hu?
(0)2i; huk2i= huk

(0)2i

Here we again employ identity "ijnu?j
n"ipmu?p
m=(�jp�nm¡ �jm�np)u?j
nu?p
m



Effect of rotation on the turbulence 21/25

With increase of the rotation rate the turbulence become highly
anisotropic

� The mixing in direction which is perpendicular to rotation axis
become less turbulent. The turbulent diffusivity and viscosity
become anisotropic.

� The heat flux is anisotropic, the polar regions are heated up

� The � effect is anisotropic and it is suppressed along the rotation
axis (Kitchatinov & Ruediger 1993)



�2 dynamo is not efficient for the fast rotators 22/25



23/25



Example of cross-helicity dynamo model 24/25



Summary 25/25

� The dynamo is a an instability of the large-scale magnetic field.

� The astrophysical objects demonstrate numerous dynamo scenarios

¡ Cyclic dynamos are typical for the partially convective stars. Here the
dynamo is due to the large-scale flow (differential rotation generate B')
and turbulent generation, e.g., � effect, generate Bp, jB'j� jBpj.

¡ Steady dynamos are typical for the fully convective stars and planet as well.
Here, jB'j � jBpj these objects are examples of turbulent dynamos: �2,
or �2¡

� The global rotation results to the anisotropy of the turbulent effects

¡ anisotropy of � effect, the axisymmetric �2 dynamo is suppressed,

¡ anisotropy of turbulent diffusion and the heat flux


